Electrical capacitance tomography(ECT)has great application potential inmultiphase processmonitoring,and its visualization results are of great significance for studying the changes in two-phase flow in closed environ...Electrical capacitance tomography(ECT)has great application potential inmultiphase processmonitoring,and its visualization results are of great significance for studying the changes in two-phase flow in closed environments.In this paper,compressed sensing(CS)theory based on dictionary learning is introduced to the inverse problem of ECT,and the K-SVD algorithm is used to learn the overcomplete dictionary to establish a nonlinear mapping between observed capacitance and sparse space.Because the trained overcomplete dictionary has the property to match few features of interest in the reconstructed image of ECT,it is not necessary to rely on the sparsity of coefficient vector to solve the nonlinear mapping as most algorithms based on CS theory.Two-phase flow distribution in a cylindrical pipe was modeled and simulated,and three variations without sparse constraint based on Landweber,Tikhonov,and Newton-Raphson algorithms were used to rapidly reconstruct a 2-D image.展开更多
The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functio...The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio.展开更多
The transform base function method is one of the most commonly used techniques for seismic denoising, which achieves the purpose of removing noise by utilizing the sparseness and separateness of seismic data in the tr...The transform base function method is one of the most commonly used techniques for seismic denoising, which achieves the purpose of removing noise by utilizing the sparseness and separateness of seismic data in the transform base function domain. However, the effect is not satisfactory because it needs to pre-select a set of fixed transform-base functions and process the corresponding transform. In order to find a new approach, we introduce learning-type overcomplete dictionaries, i.e., optimally sparse data representation is achieved through learning and training driven by seismic modeling data, instead of using a single set of fixed transform bases. In this paper, we combine dictionary learning with total variation (TV) minimization to suppress pseudo-Gibbs artifacts and describe the effects of non-uniform dictionary sub-block scale on removing noises. Taking the discrete cosine transform and random noise as an example, we made comparisons between a single transform base, non-learning-type, overcomplete dictionary and a learning-type overcomplete dictionary and also compare the results with uniform and nonuniform size dictionary atoms. The results show that, when seismic data is represented sparsely using the learning-type overcomplete dictionary, noise is also removed and visibility and signal to noise ratio is markedly increased. We also compare the results with uniform and nonuniform size dictionary atoms, which demonstrate that a nonuniform dictionary atom is more suitable for seismic denoising.展开更多
基金This research was supported by the National Natural Science Foundation of China(No.51704229)Outstanding Youth Science Fund of Xi’an University of Science and Technology(No.2018YQ2-01).
文摘Electrical capacitance tomography(ECT)has great application potential inmultiphase processmonitoring,and its visualization results are of great significance for studying the changes in two-phase flow in closed environments.In this paper,compressed sensing(CS)theory based on dictionary learning is introduced to the inverse problem of ECT,and the K-SVD algorithm is used to learn the overcomplete dictionary to establish a nonlinear mapping between observed capacitance and sparse space.Because the trained overcomplete dictionary has the property to match few features of interest in the reconstructed image of ECT,it is not necessary to rely on the sparsity of coefficient vector to solve the nonlinear mapping as most algorithms based on CS theory.Two-phase flow distribution in a cylindrical pipe was modeled and simulated,and three variations without sparse constraint based on Landweber,Tikhonov,and Newton-Raphson algorithms were used to rapidly reconstruct a 2-D image.
基金Supported by the National"863"Project(No.2014AA06A605)
文摘The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio.
基金supported by The National 973 program (No. 2007 CB209505)Basic Research Project of PetroChina's 12th Five Year Plan (No. 2011A-3601)RIPED Youth Innovation Foundation (No. 2010-A-26-01)
文摘The transform base function method is one of the most commonly used techniques for seismic denoising, which achieves the purpose of removing noise by utilizing the sparseness and separateness of seismic data in the transform base function domain. However, the effect is not satisfactory because it needs to pre-select a set of fixed transform-base functions and process the corresponding transform. In order to find a new approach, we introduce learning-type overcomplete dictionaries, i.e., optimally sparse data representation is achieved through learning and training driven by seismic modeling data, instead of using a single set of fixed transform bases. In this paper, we combine dictionary learning with total variation (TV) minimization to suppress pseudo-Gibbs artifacts and describe the effects of non-uniform dictionary sub-block scale on removing noises. Taking the discrete cosine transform and random noise as an example, we made comparisons between a single transform base, non-learning-type, overcomplete dictionary and a learning-type overcomplete dictionary and also compare the results with uniform and nonuniform size dictionary atoms. The results show that, when seismic data is represented sparsely using the learning-type overcomplete dictionary, noise is also removed and visibility and signal to noise ratio is markedly increased. We also compare the results with uniform and nonuniform size dictionary atoms, which demonstrate that a nonuniform dictionary atom is more suitable for seismic denoising.