Nanogrid is “The new ray of hope” for people living in remote isolated locations as well as where power supply reliability is poor. A nanogrid is a small power capacity distribution system with the ability to operat...Nanogrid is “The new ray of hope” for people living in remote isolated locations as well as where power supply reliability is poor. A nanogrid is a small power capacity distribution system with the ability to operate standalone or with a utility grid. It consists of local power production supplying local loads and energy storage systems. In this paper, an innovative inverter design is presented, which converts the power in a single stage. It is superior to the traditional two-stage inverter system and can supply hybrid loads (AC and DC loads) with a single input. System AC and DC bus voltages are regulated under both steady-state and dynamic load variation conditions in the nanogrid. Simulation results are presented which confirm the suitability of the inverter and its control strategy for a hybrid nanogrid system.展开更多
The fast switching behaviors of wide bandgap devices bring some challenges such as high du/dt and limited short-circuit current withstand capability to the reliable operation of the motor drives.The current-source-inv...The fast switching behaviors of wide bandgap devices bring some challenges such as high du/dt and limited short-circuit current withstand capability to the reliable operation of the motor drives.The current-source-inverter(CSI)provides a promising solution in mitigating those challenges by owning the DC-link choke,the reverse-voltage blocking switches and AC commutation capacitors.To further reduce du/dt on switches of CSI fed motor drives,the technique of partial charging of capacitors have been investigated in this paper.By designing the series-connected and the parallel-connected partial-charging circuit for capacitors in DC-link,the voltage profile of CSI could be improved.Specifically,the zero-voltage-switching(ZVS)is achieved for main power switches,the du/dt is reduced and the overvoltage protection is presented.The working mechanism of the technique of partial charging of capacitor is described and one example is discussed on the dual three-phase motor drive.The experimental verification is presented to show the performance of partial charging technique for improving voltage profile of CSI fed motor drives.展开更多
Transient stability of doubly-fed induction generators(DFIGs)is a major concern in both AC and DC grids,and DFIGs must stay connected for a time during grid faults according to the power grid requirements.For this pur...Transient stability of doubly-fed induction generators(DFIGs)is a major concern in both AC and DC grids,and DFIGs must stay connected for a time during grid faults according to the power grid requirements.For this purpose,this work proposes an overcurrent and overvoltage protective device(OCV-PD)to ensure that DCbased DFIG system can stay connected and operate well during the faults.Compared with a series dynamic braking resistor(SDBR),two aspects are improved.First,a twolevel control strategy and DC inductor circuit are used to ensure that the OCV-PD can limit the current impulse to protect DFIG system during an overcurrent fault.Second,the OCV-PD can protect system from overvoltage fault which a SDBR cannot do.Simulation results verify itsvalidity and feasibility,finding that for overcurrent protection the OCV-PD outperforms a SDBR with an average decreased index of 3.29%,and for overvoltage protection it achieves an average index of 1.02%.展开更多
文摘Nanogrid is “The new ray of hope” for people living in remote isolated locations as well as where power supply reliability is poor. A nanogrid is a small power capacity distribution system with the ability to operate standalone or with a utility grid. It consists of local power production supplying local loads and energy storage systems. In this paper, an innovative inverter design is presented, which converts the power in a single stage. It is superior to the traditional two-stage inverter system and can supply hybrid loads (AC and DC loads) with a single input. System AC and DC bus voltages are regulated under both steady-state and dynamic load variation conditions in the nanogrid. Simulation results are presented which confirm the suitability of the inverter and its control strategy for a hybrid nanogrid system.
基金Supported by the Jiangsu Natural Science Foundation of China(BK20180013)in part by Shen Zhen Science and Technology Project(CYJ20180306174439784).
文摘The fast switching behaviors of wide bandgap devices bring some challenges such as high du/dt and limited short-circuit current withstand capability to the reliable operation of the motor drives.The current-source-inverter(CSI)provides a promising solution in mitigating those challenges by owning the DC-link choke,the reverse-voltage blocking switches and AC commutation capacitors.To further reduce du/dt on switches of CSI fed motor drives,the technique of partial charging of capacitors have been investigated in this paper.By designing the series-connected and the parallel-connected partial-charging circuit for capacitors in DC-link,the voltage profile of CSI could be improved.Specifically,the zero-voltage-switching(ZVS)is achieved for main power switches,the du/dt is reduced and the overvoltage protection is presented.The working mechanism of the technique of partial charging of capacitor is described and one example is discussed on the dual three-phase motor drive.The experimental verification is presented to show the performance of partial charging technique for improving voltage profile of CSI fed motor drives.
基金supported by Natural Science Foundation of China(No.61473170)Key R&D Plan Project of Shandong Province,PRC(No.2016GSF115018)
文摘Transient stability of doubly-fed induction generators(DFIGs)is a major concern in both AC and DC grids,and DFIGs must stay connected for a time during grid faults according to the power grid requirements.For this purpose,this work proposes an overcurrent and overvoltage protective device(OCV-PD)to ensure that DCbased DFIG system can stay connected and operate well during the faults.Compared with a series dynamic braking resistor(SDBR),two aspects are improved.First,a twolevel control strategy and DC inductor circuit are used to ensure that the OCV-PD can limit the current impulse to protect DFIG system during an overcurrent fault.Second,the OCV-PD can protect system from overvoltage fault which a SDBR cannot do.Simulation results verify itsvalidity and feasibility,finding that for overcurrent protection the OCV-PD outperforms a SDBR with an average decreased index of 3.29%,and for overvoltage protection it achieves an average index of 1.02%.