Objective To investigate oxidative DNA damage in pharmacy technicians preparing antineoplastic drugs at the PIVAS (Pharmacy Intravenous Admixture Service) in two Chinese hospitals. Methods Urinary 8-OHdG served as a...Objective To investigate oxidative DNA damage in pharmacy technicians preparing antineoplastic drugs at the PIVAS (Pharmacy Intravenous Admixture Service) in two Chinese hospitals. Methods Urinary 8-OHdG served as a biomarker. 5-Fluorouracil (5-FU) concentrations in air, masks and gloves were determined. The spill exposure of each PIVAS technician to antineoplastic drugs was investigated. Eighty subjects were divided into exposed group t, II, and control group I, II. Results 5-FU concentration ratios for gloves and masks in exposed group I were significantly higher than those in exposed group II (P〈0.05 or P〈0.01). The average urinary 8-OHdG concentrations in exposed group I, control group I, exposed group II, and control group II were 24.69+0.93, 20.68+1.07, 20.57+0.55, and 12.96_+0.73 ng/mg Cr, respectively. Urinary 8-OHdG concentration in exposed group I was significantly higher than that in control group I or that in exposed group 11 (P〈0.02). There was a significant correlation between urinary 8-OHdG concentrations and spill frequencies per technician (P〈0.01). Conclusion There was detectable oxidative DNA damage in PIVAS technicians exposed to antineoplastic drugs. This oxidative DNA damage may be associated with their spill exposure experience and contamination of their personal protective equipment.展开更多
Objective:To explore the possible effects of naringin on acrylamide-induced nephrotoxicity in rats.Methods:Sprague-Dawley rats weighing 200-250 g were randomly divided into five groups.The control group was given intr...Objective:To explore the possible effects of naringin on acrylamide-induced nephrotoxicity in rats.Methods:Sprague-Dawley rats weighing 200-250 g were randomly divided into five groups.The control group was given intragastric(i.g.)saline(1 mL)for 10 d.The acrylamide group was given i.g.acrylamide in saline(38.27 mg/kg titrated to 1 mL)for 10 d.The treatment groups were administered with naringin in saline(50 and 100 mg/kg,respectively)for 10 d and given i.g.acrylamide(38.27 mg/kg)1 h after naringin injection.The naringin group was given i.g.naringin(100 mg/kg)alone for 10 d.On day 11,intracardiac blood samples were obtained from the rats when they were under anesthesia,after which they were euthanized.Urea and creatinine concentrations of blood serum samples were analyzed with an autoanalyzer.Enzyme-linked immunosorbent assay was used to quantify malondialdehyde,superoxide dismutase,glutathione,glutathione peroxidase,catalase,tumor necrosis factor-α,nuclear factor-κB,interleukin(IL)-33,IL-6,IL-1β,cyclooxygenase-2,kidney injury molecule-1,mitogen-activated protein kinase-1,and caspase-3 in kidney tissues.Renal tissues were also evaluated by histopathological and immunohistochemical examinations for 8-OHdG and Bcl-2.Results:Naringin attenuated acrylamide-induced nephrotoxicity by significantly decreasing serum urea and creatinine levels.Naringin increased superoxide dismutase,glutathione,glutathione peroxidase,and catalase activities and decreased malondialdehyde levels in kidney tissues.In addition,naringin reduced the levels of inflammatory and apoptotic parameters in kidney tissues.The histopathological assay showed that acrylamide caused histopathological changes and DNA damage,which were ameliorated by naringin.Conclusions:Naringin attenuated inflammation,apoptosis,oxidative stress,and oxidative DNA damage in acrylamide-induced nephrotoxicity in rats.展开更多
To study the genotoxicity effect of environmental tobacco side-stream smokes (ETSS) on oxidative DNA damage and its molecular mechanism. Methods DNA adduct 8-hydroxydeoxyguanosine (8-OHdG) was used ...To study the genotoxicity effect of environmental tobacco side-stream smokes (ETSS) on oxidative DNA damage and its molecular mechanism. Methods DNA adduct 8-hydroxydeoxyguanosine (8-OHdG) was used as a biomarker of oxidative DNA damage. The level of 8-OHdG in DNA exposed to ETSS was detected by high performance liquid chromatography with electrochemical detection. Organic and inorganic components in ETSS were analyzed by gas chromatography-mass spectrum and atomic absorption spectrum respectively. Results Particle matters (PMs) and volatile organic compounds (VOCs) in ETSS could directly induce oxidative DNA damage and formation of 8-OHdG. There were 123 and 84 kinds of organic components in PMs and VOCs respectively, and 7 kinds of inorganic components in ETSS. Some components, especially quinones and polyphenols in ETSS, could produce free radicals in vitro by auto-oxidation without any biological activity systems, and with the catalytic reaction of metals, the DNA adduct 8-OHdG was produced. Conclusion ETSS have biological oxidative effect on DNA in vitro and in vivo, and expressed direct genotoxicity. 8-OHdG is a valuable biomarker of oxidative DNA damage.展开更多
Studies were performed to determine the extent of nuclear DNA degradation induced by iron, iron-ascorbate, or iron-bleomycin under aerobic conditions in a model system using isolated rat liver nuclei. The effects of f...Studies were performed to determine the extent of nuclear DNA degradation induced by iron, iron-ascorbate, or iron-bleomycin under aerobic conditions in a model system using isolated rat liver nuclei. The effects of five antioxidants (catalase, superoxide dismutase, dimethyl sulfoxide, glutathione and diallyl sulfide) on this oxidative nuclear damage were also investigated. At the 0.05 level for statistical significance, iron induced concentration-dependent DNA degradation, and this effect was enhanced by ascorbate and bleomycin. The antioxidants catalase, dimethyl sulfoxide, and diallyl sulfide significantly reduced the iron-ascorbate-induced DNA damage, whereas superoxide dismutase and dimethyl sulfoxide significantly reduced iron-bleomycin-induced damage. Glutathione significantly increased the iron-bleomycin-induced DNA damage. These results suggest that the reactive oxygen species generated by iron, iron-ascorbate, and iron-bleomycin are responsible for the DNA strand breaks in isolated rat liver nuclei.展开更多
BACKGROUND Oxidative damage of DNA and RNA has been associated with mortality of patients with different diseases.However,there is no published data on the potential use of DNA and RNA oxidative damage to predict the ...BACKGROUND Oxidative damage of DNA and RNA has been associated with mortality of patients with different diseases.However,there is no published data on the potential use of DNA and RNA oxidative damage to predict the prognosis of patients with hepatocellular carcinoma(HCC)undergoing liver transplantation(LT).AIM To determine whether patients with increased DNA and RNA oxidative damage prior to LT for HCC have a poor LT prognosis.METHODS Patients with HCC who underwent LT were included in this observational and retrospective study.Serum levels of all three oxidized guanine species(OGS)were measured prior to LT since guanine is the nucleobase that forms DNA and RNA most prone to oxidation.LT mortality at 1 year was the end-point study.RESULTS Surviving patients(n=101)showed lower serum OGS levels(P=0.01)and lower age of the liver donor(P=0.03)than non-surviving patients(n=13).An association between serum OGS levels prior to LT and 1-year LT(odds ratio=2.079;95%confidence interval=1.356-3.189;P=0.001)was found in the logistic regression analysis.CONCLUSION The main new finding was that high serum OGS concentration prior to LT was associated with the mortality 1 year after LT in HCC patients.展开更多
Objective To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats. Methods PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples we...Objective To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats. Methods PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples were endotracheally instilled into rats. Activity of reduced glutathione peroxidase (GSH-Px) and concentration of malondialdehyde (MDA) were used as oxidative damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. DNA migration length (μm) and rate of tail were used as DNA damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. Results The activity of GSH-Px and the concentration of MDA in lung tissue significantly decreased after exposure to PM2.5 for 7-14 days. In peripheral blood, the concentration of MDA decreased, but the activity of GSH-Px increased 7 and 14 days after experiments. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. The DNA migration length (μm) and rate of tail in lung tissue and peripheral blood significantly increased 7 and 14 days after exposure to PM2.5. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. Conclusion PM2.5 has a definite oxidative effect on lung tissue and peripheral blood. The activity of GSH-Px and the concentration of MDA are valuable biomarkers of oxidative lung tissue damage induced by PM2.5. The DNA migration length (μm) and rate of tail are simple and valuable biomarkers of PM2 5-induced DNA damage in lung tissues and peripheral blood. The degree of DNA damage in peripheral blood can predict the degree of DNA damage in lung tissue.展开更多
AIM: To assess whether a correlation exists between oxidative DNA damage occurring in chronic HCV-related hepatitis and expression levels of pro-inflammatory cytokines, TGF-α and c-myc. METHODS: The series included...AIM: To assess whether a correlation exists between oxidative DNA damage occurring in chronic HCV-related hepatitis and expression levels of pro-inflammatory cytokines, TGF-α and c-myc. METHODS: The series included 37 patients with chronic active HCV-related hepatitis and 11 with HCV-related compensated cirrhosis. Eight-hydroxydeoxyguanosine in liver biopsies was quantified using an electrochemical detector. The mRNA expression of TNF-α, IL-1β, TGF-α and c-myc in liver specimens was detected by semiquantitative comparaUve RT-PCR. RESULTS: TNF-α levels were significantly higher in hepatitis patients than in cirrhosis patients (P=0.05). IL-1β was higher in cirrhosis patients (P=0.05). A sig- nificant correlation was found between TNF-α and staging (P= 0.05) and between IL-1β levels and grading (P=0.04). c-myc showed a significantly higher expression in cirrhosis patients (P=0.001). Eight-hydroxydeoxyguanosine levels were significantly higher in cirrhosis patients (P=0.05) and in HCV genotype 1 (P=0.03). Considering all patients, 8-hydroxydeoxyguanosine levels were found to be correlated with genotype (P=0.04) and grading (P=0.007). Also multiple logistic regression analysis demonstrated a significant correlation among the number of DNA adducts, TNF-α expression and HCV genotype (P= 0.02). CONCLUSION: In chronic HCV-related liver damage, oxidative DNA damage correlates with HCV genotype, grading and TNF-α levels. As HCV-related liver damage progresses, TNF-α levels drop while IL-1β and c-myc levels increase, which may be relevant to liver carcinogenesis.展开更多
Theaflavins(TFs) are the dimers of a couple of epimerized catechins,which are specially formed during black tea fermentation.To explore the differences among four main TF derivatives(theaflavin(TF 1),theaflavin3-galla...Theaflavins(TFs) are the dimers of a couple of epimerized catechins,which are specially formed during black tea fermentation.To explore the differences among four main TF derivatives(theaflavin(TF 1),theaflavin3-gallate(TF 2 A),theaflavin-3'-gallate(TF 2 B),and theaflavin-3,3'-digallate(TF 3)) in scavenging reactive oxygen species(ROS) in vitro,their properties of inhibiting superoxide,singlet oxygen,hydrogen peroxide,and the hydroxyl radical,and their effects on hydroxyl radical-induced DNA oxidative damage were systematically analyzed in the present study.The results show that,compared with()-epigallocatechin gallate(EGCG),TF derivatives were good antioxidants for scavenging ROS and preventing the hydroxyl radical-induced DNA damage in vitro.TF 3 was the most positive in scavenging hydrogen peroxide and hydroxyl radical,and TF 1 suppressed superoxide.Positive antioxidant capacities of TF 2 B on singlet oxygen,hydrogen peroxide,hydroxyl radical,and the hydroxyl radical-induced DNA damage in vitro were found.The differences between the antioxidant capacities of four main TF derivatives in relation to their chemical structures were also discussed.We suggest that these activity differences among TF derivatives would be beneficial to scavenge different ROS with therapeutic potential.展开更多
Our genomic DNA is under constant assault from endogenous and exogenous sources,which needs to be resolved to maintain cellular homeostasis.The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I(Tdp1)catalyz...Our genomic DNA is under constant assault from endogenous and exogenous sources,which needs to be resolved to maintain cellular homeostasis.The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I(Tdp1)catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends.Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts.These DNA-adducts can be divided into two groups:small adducts,including oxidized nucleotides,RNA,and non-canonical nucleoside analogs,and large adducts,such as(drug-stabilized)topoisomerase-DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA.Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance,making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents.Tdp1’s unique catalytic cycle,which is centered on the formation of Tdp1-DNA covalent reaction intermediate,allows for two principally different targeting strategies:(1)catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics;and(2)poisoning of Tdp1 by stabilization of the Tdp1-DNA covalent reaction intermediate,which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution,analogous to topoisomerase targeted poisons such as topotecan or etoposide.The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept;however,no small molecules have been reported for this strategy.Herein,we concisely discuss the development of Tdp1 catalytic inhibitors and their results.展开更多
We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles(Fe_2O_3-NPs) in Raphanus sativus(radish).Fe_2O_3-NPs retarded the root length and seed germination in radish.Ultrathin sections o...We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles(Fe_2O_3-NPs) in Raphanus sativus(radish).Fe_2O_3-NPs retarded the root length and seed germination in radish.Ultrathin sections of treated roots showed subcellular localization of Fe_2O_3-NPs,along with the appearance of damaged mitochondria and excessive vacuolization.Flow cytometric analysis of Fe_2O_3-NPs(1.0 mg/m L) treated groups exhibited 219.5%,161%,120.4% and 161.4% increase in intracellular reactive oxygen species(ROS),mitochondrial membrane potential(ΔΨm),nitric oxide(NO) and Ca2+influx in radish protoplasts.A concentration dependent increase in the antioxidative enzymes glutathione(GSH),catalase(CAT),superoxide dismutase(SOD) and lipid peroxidation(LPO) has been recorded.Comet assay showed a concentration dependent increase in deoxyribonucleic acid(DNA) strand breaks in Fe_2O_3-NPs treated groups.Cell cycle analysis revealed 88.4% of cells in sub-G1 apoptotic phase,suggesting cell death in Fe_2O_3-NPs(2.0 mg/m L) treated group.Taking together,the genotoxicity induced by Fe_2O_3-NPs highlights the importance of environmental risk associated with improper disposal of nanoparticles(NPs) and radish can serve as a good indicator for measuring the phytotoxicity of NPs grown in NP-polluted environment.展开更多
Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work ...Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work demonstrated that HBQs and hydrogen peroxide(H_2O_2)together generated oxidative DNA damage via a metal-independent and intercalationenhanced oxidation mechanism in vitro. This study further investigated the efficiency of various HBQs to induce oxidative DNA damage in T24 bladder cancer cells. Compared with T24 cells without treatment(3.1 lesions per 10~6 d G), the level of 8-oxo-7,8-dihydro-2′-deoxyguanosine(8-oxod G) significantly increased by 1.4, 3.2, 8.8, and 9.2 times after treatment with tetrabromo-1,4-benzoquinone(TBBQ), terachloro-1,4-benzoquinone(TCBQ),2,6-dichloro-1,4-benzoquinone(2,6-DCBQ) and 2,5-dichloro-1,4-benzoquinone(2,5-DCBQ) for24 hr, respectively. Interestingly, we found that the oxidative potency of HBQs in T24 cells(2,5-DCBQ ≈ 2,6-DCBQ 〉 TCBQ 〉 TBBQ) is inconsistent with that of in vitro ds DNA oxidation(TCBQ 〉 TBBQ 〉 2,5-DCBQ 〉 2,6-DCBQ), suggesting HBQs induce oxidative lesions in cellular genomic DNA probably involved with a complex mechanism.展开更多
Cancer cells,in which the RAS and PI3K pathways are activated,produce high levels of reactive oxygen species(ROS),which cause oxidative DNA damage and ultimately cellular senescence.This process has been documented in...Cancer cells,in which the RAS and PI3K pathways are activated,produce high levels of reactive oxygen species(ROS),which cause oxidative DNA damage and ultimately cellular senescence.This process has been documented in tissue culture,mouse models,and human pre-cancerous lesions.In this context,cellular senescence functions as a tumour suppressor mechanism.Some rare cancer cells,however,manage to adapt to avoid senescence and continue to proliferate.One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor.In this review,we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS:the increased activity of the base excision repair(BER)pathway,achieved through the enhanced expression of BER enzymes and DNA repair accessory factors.These proteins,exemplified here by the CUT domain proteins CUX1,CUX2,and SATB1,stimulate the activity of BER enzymes.The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels.As a by-product of this adaptation,these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation,temozolomide,and cisplatin.Moreover,considering the intrinsic error rate associated with DNA repair and translesion synthesis,the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population,thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance,a major obstacle to clinical treatment.展开更多
Objective The double transgenic mouse model (APPswe/PSldE9) of Alzheimer's disease (AD) has been widely used in experimental studies. β-Amyloid (Aβ) peptide is excessively produced in AD mouse brain, which af...Objective The double transgenic mouse model (APPswe/PSldE9) of Alzheimer's disease (AD) has been widely used in experimental studies. β-Amyloid (Aβ) peptide is excessively produced in AD mouse brain, which affects synaptic function and the development of central nervous system. However, little has been reported on characterization of this model. The present study aimed to characterize this mouse AD model and its wild-type counterparts by biochemical and functional approaches. Methods Blood samples were collected from the transgenic and the wild-type mice, and radial arm water maze behavioral test was conducted at the ages of 6 and 12 months. The mice were sacrificed at 12-month age. One hemisphere of the brain was frozen-sectioned for immunohistochemistry and the other hemisphere was dissected into 7 regions. The levels ofAβ1-40, Aβ1-42 and 8-hydroxydeoxyguanosine (8-OHdG) in blood or/and brain samples were analyzed by ELISA. Secretase activities in brain regions were analyzed by in vitro assays. Results The pre-mature death rate of transgenic mice was approximately 35% before 6-month age, and high levels of Aβ1-40 and Aβ1-42 were detected in these dead mice brains with a ratio of 1 : 1 0. The level of blood-borne Aβ at 6-month age was similar with that at 12-month age. Besides, Aβ1-40 level in the blood was significantly higher than Aβ1-42 level at the ages of 6 and 12 months (ratio 2.37:1). In contrast, the level of Aβ1-42 in the brain (160.6 ng/mg protein) was higher than that of Aβ1-40 (74 ng/mg protein) (ratio 2.17:1). In addition, the levels of Aβ1-40 and Aβ1-42 varied markedly among different brain regions. Aβ1-42 level was significantly higher than Aβ1-40 level in cerebellum, frontal and posterior cortex, and hippocampus. Secretase activity assays did not reveal major differences among different brain regions or between wild-type and transgenic mice, suggesting that the transgene PS1 did not lead to higher 7-secretase activity but was more efficient in producing Aβ1-42 peptides. 8-OHdG, the biomarker of DNA oxidative damage, showed a trend of increase in the blood of transgenic mice, but with no significant difference, as compared with the wild-type mice. Behavioral tests showed that transgenic mice had significant memory deficits at 6-month age compared to wild-type controls, and the deficits were exacerbated at 12-month age with more errors. Conclusion These results suggest that this mouse model mimics the early-onset human AD and may represent full-blown disease at as early as 6-month age for experimental studies.展开更多
To investigate the accumulation and phytotoxicity of technical hexabromocyclododecane(HBCD)in maize,young seedlings were exposed to solutions of technical HBCD at different concentrations.The uptake kinetics showed ...To investigate the accumulation and phytotoxicity of technical hexabromocyclododecane(HBCD)in maize,young seedlings were exposed to solutions of technical HBCD at different concentrations.The uptake kinetics showed that the HBCD concentration reached an apparent equilibrium within 96 hr,and the accumulation was much higher in roots than in shoots.HBCD accumulation in maize had a positive linear correlation with the exposure concentration.The accumulation of different diastereoisomers followed the orderγ-HBCD〉β-HBCD〉α-HBCD.Compared with their proportions in the technical HBCD exposure solution,the diastereoisomer contribution increased forβ-HBCD and decreased forγ-HBCD in both maize roots and shoots with exposure time,whereas the contribution ofα-HBCD increased in roots and decreased in shoots throughout the experimental period.These results suggest the diastereomer-specific accumulation and translocation of HBCD in maize.Inhibitory effects of HBCD on the early development of maize followed the order of germination rate〉root biomass≥root elongation〉shoot biomass≥shoot elongation.Hydroxyl radical(OH)and histone H2AX phosphorylation(γ-H2AX)were induced in maize by HBCD exposure,indicative of the generation of oxidative stress and DNA double-strand breaks in maize.An OH scavenger inhibited the expression ofγ-H2AX foci in both maize roots and shoots,which suggests the involvement of OH generation in the HBCD-induced DNA damage.The results of this study will offer useful information for a more comprehensive assessment of the environmental behavior and toxicity of technical HBCD.展开更多
Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residue...Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S_N2 reaction mechanism.Toxicity of the monohalogenated HAMs(iodoacetamide, IAM; bromoacetamide, BAM;or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints.Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM 〉 BAM 〉 CAM for Rad51, and BAM ≈ IAM 〉 CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM.展开更多
Prenatal glucocorticoids (GCs) have been used to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome of the premature. Pulmonary surfactant induction has been regard...Prenatal glucocorticoids (GCs) have been used to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome of the premature. Pulmonary surfactant induction has been regarded as the most important effect of prenatal GCs. However, report about the prolonged effects of prenatal GCs on the development of rat lung is of limited. In this study, we tried to investigate the acute and chronic modulation effects of prenatal dexamethasone (DEX) to asymmetric dimethylarginine (ADMA)/nitric oxide (NO) signal pathway of lung tissue. Pregnant Sprague Dawley rats at gestational day 14-20 were administered i.p. DEX (0.1 mg· kg-1 ·d-1). Acute programming effects of prenatal DEX were assessed at postnatal day 7, and long-term programming effects of offspring were assessed at day 120. We found that repetitive prenatal DEX exposure contributes to DNA oxidative damage and alveolar tissue dysplasia. Prenatal DEX treatment decreased ADMA and increased iNOS expres- sion. Prenatal DEX treatment also increased TNF-α transcript expression and decreased HDAC2 protein expression at acute stage. In conclusion, repetitive prenatal DEX has prolonged stress damage effects on lung tissue.展开更多
基金supported by the Scientific Research Fund of Health Bureau in Zhejiang Province (2009A089)Scientific Research Fund of Education Bureau in Zhejiang Province (Y200804934)
文摘Objective To investigate oxidative DNA damage in pharmacy technicians preparing antineoplastic drugs at the PIVAS (Pharmacy Intravenous Admixture Service) in two Chinese hospitals. Methods Urinary 8-OHdG served as a biomarker. 5-Fluorouracil (5-FU) concentrations in air, masks and gloves were determined. The spill exposure of each PIVAS technician to antineoplastic drugs was investigated. Eighty subjects were divided into exposed group t, II, and control group I, II. Results 5-FU concentration ratios for gloves and masks in exposed group I were significantly higher than those in exposed group II (P〈0.05 or P〈0.01). The average urinary 8-OHdG concentrations in exposed group I, control group I, exposed group II, and control group II were 24.69+0.93, 20.68+1.07, 20.57+0.55, and 12.96_+0.73 ng/mg Cr, respectively. Urinary 8-OHdG concentration in exposed group I was significantly higher than that in control group I or that in exposed group 11 (P〈0.02). There was a significant correlation between urinary 8-OHdG concentrations and spill frequencies per technician (P〈0.01). Conclusion There was detectable oxidative DNA damage in PIVAS technicians exposed to antineoplastic drugs. This oxidative DNA damage may be associated with their spill exposure experience and contamination of their personal protective equipment.
文摘Objective:To explore the possible effects of naringin on acrylamide-induced nephrotoxicity in rats.Methods:Sprague-Dawley rats weighing 200-250 g were randomly divided into five groups.The control group was given intragastric(i.g.)saline(1 mL)for 10 d.The acrylamide group was given i.g.acrylamide in saline(38.27 mg/kg titrated to 1 mL)for 10 d.The treatment groups were administered with naringin in saline(50 and 100 mg/kg,respectively)for 10 d and given i.g.acrylamide(38.27 mg/kg)1 h after naringin injection.The naringin group was given i.g.naringin(100 mg/kg)alone for 10 d.On day 11,intracardiac blood samples were obtained from the rats when they were under anesthesia,after which they were euthanized.Urea and creatinine concentrations of blood serum samples were analyzed with an autoanalyzer.Enzyme-linked immunosorbent assay was used to quantify malondialdehyde,superoxide dismutase,glutathione,glutathione peroxidase,catalase,tumor necrosis factor-α,nuclear factor-κB,interleukin(IL)-33,IL-6,IL-1β,cyclooxygenase-2,kidney injury molecule-1,mitogen-activated protein kinase-1,and caspase-3 in kidney tissues.Renal tissues were also evaluated by histopathological and immunohistochemical examinations for 8-OHdG and Bcl-2.Results:Naringin attenuated acrylamide-induced nephrotoxicity by significantly decreasing serum urea and creatinine levels.Naringin increased superoxide dismutase,glutathione,glutathione peroxidase,and catalase activities and decreased malondialdehyde levels in kidney tissues.In addition,naringin reduced the levels of inflammatory and apoptotic parameters in kidney tissues.The histopathological assay showed that acrylamide caused histopathological changes and DNA damage,which were ameliorated by naringin.Conclusions:Naringin attenuated inflammation,apoptosis,oxidative stress,and oxidative DNA damage in acrylamide-induced nephrotoxicity in rats.
基金The research was supported and financed by brainstorm project and public good fund from the Ministry of Science and TechnologyChina (2001BA704B01& 2001DIA10001).
文摘To study the genotoxicity effect of environmental tobacco side-stream smokes (ETSS) on oxidative DNA damage and its molecular mechanism. Methods DNA adduct 8-hydroxydeoxyguanosine (8-OHdG) was used as a biomarker of oxidative DNA damage. The level of 8-OHdG in DNA exposed to ETSS was detected by high performance liquid chromatography with electrochemical detection. Organic and inorganic components in ETSS were analyzed by gas chromatography-mass spectrum and atomic absorption spectrum respectively. Results Particle matters (PMs) and volatile organic compounds (VOCs) in ETSS could directly induce oxidative DNA damage and formation of 8-OHdG. There were 123 and 84 kinds of organic components in PMs and VOCs respectively, and 7 kinds of inorganic components in ETSS. Some components, especially quinones and polyphenols in ETSS, could produce free radicals in vitro by auto-oxidation without any biological activity systems, and with the catalytic reaction of metals, the DNA adduct 8-OHdG was produced. Conclusion ETSS have biological oxidative effect on DNA in vitro and in vivo, and expressed direct genotoxicity. 8-OHdG is a valuable biomarker of oxidative DNA damage.
文摘Studies were performed to determine the extent of nuclear DNA degradation induced by iron, iron-ascorbate, or iron-bleomycin under aerobic conditions in a model system using isolated rat liver nuclei. The effects of five antioxidants (catalase, superoxide dismutase, dimethyl sulfoxide, glutathione and diallyl sulfide) on this oxidative nuclear damage were also investigated. At the 0.05 level for statistical significance, iron induced concentration-dependent DNA degradation, and this effect was enhanced by ascorbate and bleomycin. The antioxidants catalase, dimethyl sulfoxide, and diallyl sulfide significantly reduced the iron-ascorbate-induced DNA damage, whereas superoxide dismutase and dimethyl sulfoxide significantly reduced iron-bleomycin-induced damage. Glutathione significantly increased the iron-bleomycin-induced DNA damage. These results suggest that the reactive oxygen species generated by iron, iron-ascorbate, and iron-bleomycin are responsible for the DNA strand breaks in isolated rat liver nuclei.
文摘BACKGROUND Oxidative damage of DNA and RNA has been associated with mortality of patients with different diseases.However,there is no published data on the potential use of DNA and RNA oxidative damage to predict the prognosis of patients with hepatocellular carcinoma(HCC)undergoing liver transplantation(LT).AIM To determine whether patients with increased DNA and RNA oxidative damage prior to LT for HCC have a poor LT prognosis.METHODS Patients with HCC who underwent LT were included in this observational and retrospective study.Serum levels of all three oxidized guanine species(OGS)were measured prior to LT since guanine is the nucleobase that forms DNA and RNA most prone to oxidation.LT mortality at 1 year was the end-point study.RESULTS Surviving patients(n=101)showed lower serum OGS levels(P=0.01)and lower age of the liver donor(P=0.03)than non-surviving patients(n=13).An association between serum OGS levels prior to LT and 1-year LT(odds ratio=2.079;95%confidence interval=1.356-3.189;P=0.001)was found in the logistic regression analysis.CONCLUSION The main new finding was that high serum OGS concentration prior to LT was associated with the mortality 1 year after LT in HCC patients.
基金supported by National Natural Scientific Foundation (No. 90406024)the Natural Science Fund of Tianjin (No. 023606611)
文摘Objective To investigate the oxidative damage to lung tissue and peripherial blood in PM2.5-treated rats. Methods PM2.5 samples were collected using an auto-sampling instrument in summer and winter. Treated samples were endotracheally instilled into rats. Activity of reduced glutathione peroxidase (GSH-Px) and concentration of malondialdehyde (MDA) were used as oxidative damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. DNA migration length (μm) and rate of tail were used as DNA damage biomarkers of lung tissue and peripheral blood detected with the biochemical method. Results The activity of GSH-Px and the concentration of MDA in lung tissue significantly decreased after exposure to PM2.5 for 7-14 days. In peripheral blood, the concentration of MDA decreased, but the activity of GSH-Px increased 7 and 14 days after experiments. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. The DNA migration length (μm) and rate of tail in lung tissue and peripheral blood significantly increased 7 and 14 days after exposure to PM2.5. The two indicators had a dose-effect relation and similar changing tendency in lung tissue and peripheral blood. Conclusion PM2.5 has a definite oxidative effect on lung tissue and peripheral blood. The activity of GSH-Px and the concentration of MDA are valuable biomarkers of oxidative lung tissue damage induced by PM2.5. The DNA migration length (μm) and rate of tail are simple and valuable biomarkers of PM2 5-induced DNA damage in lung tissues and peripheral blood. The degree of DNA damage in peripheral blood can predict the degree of DNA damage in lung tissue.
基金Supported by PRIN grants from the Italian Ministry of Science and Technology, No. 2003063143-006
文摘AIM: To assess whether a correlation exists between oxidative DNA damage occurring in chronic HCV-related hepatitis and expression levels of pro-inflammatory cytokines, TGF-α and c-myc. METHODS: The series included 37 patients with chronic active HCV-related hepatitis and 11 with HCV-related compensated cirrhosis. Eight-hydroxydeoxyguanosine in liver biopsies was quantified using an electrochemical detector. The mRNA expression of TNF-α, IL-1β, TGF-α and c-myc in liver specimens was detected by semiquantitative comparaUve RT-PCR. RESULTS: TNF-α levels were significantly higher in hepatitis patients than in cirrhosis patients (P=0.05). IL-1β was higher in cirrhosis patients (P=0.05). A sig- nificant correlation was found between TNF-α and staging (P= 0.05) and between IL-1β levels and grading (P=0.04). c-myc showed a significantly higher expression in cirrhosis patients (P=0.001). Eight-hydroxydeoxyguanosine levels were significantly higher in cirrhosis patients (P=0.05) and in HCV genotype 1 (P=0.03). Considering all patients, 8-hydroxydeoxyguanosine levels were found to be correlated with genotype (P=0.04) and grading (P=0.007). Also multiple logistic regression analysis demonstrated a significant correlation among the number of DNA adducts, TNF-α expression and HCV genotype (P= 0.02). CONCLUSION: In chronic HCV-related liver damage, oxidative DNA damage correlates with HCV genotype, grading and TNF-α levels. As HCV-related liver damage progresses, TNF-α levels drop while IL-1β and c-myc levels increase, which may be relevant to liver carcinogenesis.
基金Project supported by the National Natural Science Foundation of China (No. 30901002)the Fundamental Research Funds for the Central Universitiesthe China Postdoctoral Science Foundation Funded Project (No. 20070421210)
文摘Theaflavins(TFs) are the dimers of a couple of epimerized catechins,which are specially formed during black tea fermentation.To explore the differences among four main TF derivatives(theaflavin(TF 1),theaflavin3-gallate(TF 2 A),theaflavin-3'-gallate(TF 2 B),and theaflavin-3,3'-digallate(TF 3)) in scavenging reactive oxygen species(ROS) in vitro,their properties of inhibiting superoxide,singlet oxygen,hydrogen peroxide,and the hydroxyl radical,and their effects on hydroxyl radical-induced DNA oxidative damage were systematically analyzed in the present study.The results show that,compared with()-epigallocatechin gallate(EGCG),TF derivatives were good antioxidants for scavenging ROS and preventing the hydroxyl radical-induced DNA damage in vitro.TF 3 was the most positive in scavenging hydrogen peroxide and hydroxyl radical,and TF 1 suppressed superoxide.Positive antioxidant capacities of TF 2 B on singlet oxygen,hydrogen peroxide,hydroxyl radical,and the hydroxyl radical-induced DNA damage in vitro were found.The differences between the antioxidant capacities of four main TF derivatives in relation to their chemical structures were also discussed.We suggest that these activity differences among TF derivatives would be beneficial to scavenge different ROS with therapeutic potential.
基金RCAMvW was in part funded by American Cancer Society UAB ACS-IRG Junior Faculty Development Grant(ACS-IRG-60-001-53)Department of Defense OCRP pilot award W81XWH-15-1-0198the National Institutes of Health Cancer Center Core Support Grant(P30CA013148).
文摘Our genomic DNA is under constant assault from endogenous and exogenous sources,which needs to be resolved to maintain cellular homeostasis.The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I(Tdp1)catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends.Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts.These DNA-adducts can be divided into two groups:small adducts,including oxidized nucleotides,RNA,and non-canonical nucleoside analogs,and large adducts,such as(drug-stabilized)topoisomerase-DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA.Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance,making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents.Tdp1’s unique catalytic cycle,which is centered on the formation of Tdp1-DNA covalent reaction intermediate,allows for two principally different targeting strategies:(1)catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics;and(2)poisoning of Tdp1 by stabilization of the Tdp1-DNA covalent reaction intermediate,which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution,analogous to topoisomerase targeted poisons such as topotecan or etoposide.The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept;however,no small molecules have been reported for this strategy.Herein,we concisely discuss the development of Tdp1 catalytic inhibitors and their results.
基金funded by the National Plan for Science,Technology and Innovation(MAARIFAH)King Abdul Aziz City for Science and Technology,Kingdom of Saudi Arabia,award number 12-BIO2919-02
文摘We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles(Fe_2O_3-NPs) in Raphanus sativus(radish).Fe_2O_3-NPs retarded the root length and seed germination in radish.Ultrathin sections of treated roots showed subcellular localization of Fe_2O_3-NPs,along with the appearance of damaged mitochondria and excessive vacuolization.Flow cytometric analysis of Fe_2O_3-NPs(1.0 mg/m L) treated groups exhibited 219.5%,161%,120.4% and 161.4% increase in intracellular reactive oxygen species(ROS),mitochondrial membrane potential(ΔΨm),nitric oxide(NO) and Ca2+influx in radish protoplasts.A concentration dependent increase in the antioxidative enzymes glutathione(GSH),catalase(CAT),superoxide dismutase(SOD) and lipid peroxidation(LPO) has been recorded.Comet assay showed a concentration dependent increase in deoxyribonucleic acid(DNA) strand breaks in Fe_2O_3-NPs treated groups.Cell cycle analysis revealed 88.4% of cells in sub-G1 apoptotic phase,suggesting cell death in Fe_2O_3-NPs(2.0 mg/m L) treated group.Taking together,the genotoxicity induced by Fe_2O_3-NPs highlights the importance of environmental risk associated with improper disposal of nanoparticles(NPs) and radish can serve as a good indicator for measuring the phytotoxicity of NPs grown in NP-polluted environment.
基金supported by the Ministry of Science and Technology of China(Nos.2016YFA0203102,2016YFC0900301 and 2014CB932003)the National Natural Science Foundation of China(Nos.21375142,21321004,and 21435008)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14030000)
文摘Halobenzoquinones(HBQs) are an emerging class of halogenated disinfection byproducts(DBPs) in drinking water, which raised public concerns due to potential carcinogenic effects to human bladder. Our previous work demonstrated that HBQs and hydrogen peroxide(H_2O_2)together generated oxidative DNA damage via a metal-independent and intercalationenhanced oxidation mechanism in vitro. This study further investigated the efficiency of various HBQs to induce oxidative DNA damage in T24 bladder cancer cells. Compared with T24 cells without treatment(3.1 lesions per 10~6 d G), the level of 8-oxo-7,8-dihydro-2′-deoxyguanosine(8-oxod G) significantly increased by 1.4, 3.2, 8.8, and 9.2 times after treatment with tetrabromo-1,4-benzoquinone(TBBQ), terachloro-1,4-benzoquinone(TCBQ),2,6-dichloro-1,4-benzoquinone(2,6-DCBQ) and 2,5-dichloro-1,4-benzoquinone(2,5-DCBQ) for24 hr, respectively. Interestingly, we found that the oxidative potency of HBQs in T24 cells(2,5-DCBQ ≈ 2,6-DCBQ 〉 TCBQ 〉 TBBQ) is inconsistent with that of in vitro ds DNA oxidation(TCBQ 〉 TBBQ 〉 2,5-DCBQ 〉 2,6-DCBQ), suggesting HBQs induce oxidative lesions in cellular genomic DNA probably involved with a complex mechanism.
基金supported by Canadian Institutes of Health Research(Grants MOP-326694 and MOP-391532)the National Science and Engineering Council(Grant RGPIN-2016-05155)to A.N.
文摘Cancer cells,in which the RAS and PI3K pathways are activated,produce high levels of reactive oxygen species(ROS),which cause oxidative DNA damage and ultimately cellular senescence.This process has been documented in tissue culture,mouse models,and human pre-cancerous lesions.In this context,cellular senescence functions as a tumour suppressor mechanism.Some rare cancer cells,however,manage to adapt to avoid senescence and continue to proliferate.One well-documented mode of adaptation involves increased production of antioxidants often associated with inactivation of the KEAP1 tumour suppressor gene and the resulting upregulation of the NRF2 transcription factor.In this review,we detail an alternative mode of adaptation to oxidative DNA damage induced by ROS:the increased activity of the base excision repair(BER)pathway,achieved through the enhanced expression of BER enzymes and DNA repair accessory factors.These proteins,exemplified here by the CUT domain proteins CUX1,CUX2,and SATB1,stimulate the activity of BER enzymes.The ensued accelerated repair of oxidative DNA damage enables cancer cells to avoid senescence despite high ROS levels.As a by-product of this adaptation,these cancer cells exhibit increased resistance to genotoxic treatments including ionizing radiation,temozolomide,and cisplatin.Moreover,considering the intrinsic error rate associated with DNA repair and translesion synthesis,the elevated number of oxidative DNA lesions caused by high ROS leads to the accumulation of mutations in the cancer cell population,thereby contributing to tumour heterogeneity and eventually to the acquisition of resistance,a major obstacle to clinical treatment.
基金supported by ApoPharma Inc.through a collaborative research project between NRC-IBS and ApoPharma Inc
文摘Objective The double transgenic mouse model (APPswe/PSldE9) of Alzheimer's disease (AD) has been widely used in experimental studies. β-Amyloid (Aβ) peptide is excessively produced in AD mouse brain, which affects synaptic function and the development of central nervous system. However, little has been reported on characterization of this model. The present study aimed to characterize this mouse AD model and its wild-type counterparts by biochemical and functional approaches. Methods Blood samples were collected from the transgenic and the wild-type mice, and radial arm water maze behavioral test was conducted at the ages of 6 and 12 months. The mice were sacrificed at 12-month age. One hemisphere of the brain was frozen-sectioned for immunohistochemistry and the other hemisphere was dissected into 7 regions. The levels ofAβ1-40, Aβ1-42 and 8-hydroxydeoxyguanosine (8-OHdG) in blood or/and brain samples were analyzed by ELISA. Secretase activities in brain regions were analyzed by in vitro assays. Results The pre-mature death rate of transgenic mice was approximately 35% before 6-month age, and high levels of Aβ1-40 and Aβ1-42 were detected in these dead mice brains with a ratio of 1 : 1 0. The level of blood-borne Aβ at 6-month age was similar with that at 12-month age. Besides, Aβ1-40 level in the blood was significantly higher than Aβ1-42 level at the ages of 6 and 12 months (ratio 2.37:1). In contrast, the level of Aβ1-42 in the brain (160.6 ng/mg protein) was higher than that of Aβ1-40 (74 ng/mg protein) (ratio 2.17:1). In addition, the levels of Aβ1-40 and Aβ1-42 varied markedly among different brain regions. Aβ1-42 level was significantly higher than Aβ1-40 level in cerebellum, frontal and posterior cortex, and hippocampus. Secretase activity assays did not reveal major differences among different brain regions or between wild-type and transgenic mice, suggesting that the transgene PS1 did not lead to higher 7-secretase activity but was more efficient in producing Aβ1-42 peptides. 8-OHdG, the biomarker of DNA oxidative damage, showed a trend of increase in the blood of transgenic mice, but with no significant difference, as compared with the wild-type mice. Behavioral tests showed that transgenic mice had significant memory deficits at 6-month age compared to wild-type controls, and the deficits were exacerbated at 12-month age with more errors. Conclusion These results suggest that this mouse model mimics the early-onset human AD and may represent full-blown disease at as early as 6-month age for experimental studies.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14020202)the National Natural Science Foundation of China(Nos.21321004 and 21407041)
文摘To investigate the accumulation and phytotoxicity of technical hexabromocyclododecane(HBCD)in maize,young seedlings were exposed to solutions of technical HBCD at different concentrations.The uptake kinetics showed that the HBCD concentration reached an apparent equilibrium within 96 hr,and the accumulation was much higher in roots than in shoots.HBCD accumulation in maize had a positive linear correlation with the exposure concentration.The accumulation of different diastereoisomers followed the orderγ-HBCD〉β-HBCD〉α-HBCD.Compared with their proportions in the technical HBCD exposure solution,the diastereoisomer contribution increased forβ-HBCD and decreased forγ-HBCD in both maize roots and shoots with exposure time,whereas the contribution ofα-HBCD increased in roots and decreased in shoots throughout the experimental period.These results suggest the diastereomer-specific accumulation and translocation of HBCD in maize.Inhibitory effects of HBCD on the early development of maize followed the order of germination rate〉root biomass≥root elongation〉shoot biomass≥shoot elongation.Hydroxyl radical(OH)and histone H2AX phosphorylation(γ-H2AX)were induced in maize by HBCD exposure,indicative of the generation of oxidative stress and DNA double-strand breaks in maize.An OH scavenger inhibited the expression ofγ-H2AX foci in both maize roots and shoots,which suggests the involvement of OH generation in the HBCD-induced DNA damage.The results of this study will offer useful information for a more comprehensive assessment of the environmental behavior and toxicity of technical HBCD.
基金partial support from the U.S.Army Engineer Research and Development Center and the Army Environmental Quality Technology program, CESU W9132T-16-2-0005 (MJP)partly supported by the interagency agreement IAG #NTR 12003 from the National Institute of Environmental Health Sciences/Division of the National Toxicology Program to the National Center for Advancing Translational Sciences, National Institutes of Health
文摘Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S_N2 reaction mechanism.Toxicity of the monohalogenated HAMs(iodoacetamide, IAM; bromoacetamide, BAM;or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints.Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM 〉 BAM 〉 CAM for Rad51, and BAM ≈ IAM 〉 CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM.
基金supported in part by Grants CMRPG8B0141,CMRPG8B0142(H.R.Yu),CMRPG8C0171(C.H.Kang)NSC 102-2314-B-182A-042-MY3(H.R.Yu)from the National Science Council
文摘Prenatal glucocorticoids (GCs) have been used to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome of the premature. Pulmonary surfactant induction has been regarded as the most important effect of prenatal GCs. However, report about the prolonged effects of prenatal GCs on the development of rat lung is of limited. In this study, we tried to investigate the acute and chronic modulation effects of prenatal dexamethasone (DEX) to asymmetric dimethylarginine (ADMA)/nitric oxide (NO) signal pathway of lung tissue. Pregnant Sprague Dawley rats at gestational day 14-20 were administered i.p. DEX (0.1 mg· kg-1 ·d-1). Acute programming effects of prenatal DEX were assessed at postnatal day 7, and long-term programming effects of offspring were assessed at day 120. We found that repetitive prenatal DEX exposure contributes to DNA oxidative damage and alveolar tissue dysplasia. Prenatal DEX treatment decreased ADMA and increased iNOS expres- sion. Prenatal DEX treatment also increased TNF-α transcript expression and decreased HDAC2 protein expression at acute stage. In conclusion, repetitive prenatal DEX has prolonged stress damage effects on lung tissue.