In this report,we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of su...In this report,we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1-x)Se2(CIGS)modules.In this way,we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished.Specifically,by analyzing the standard P1 patterning line ablated before the CIGS deposition,we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath.We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope(SEM)cross-section,where a reduction of the photoemission cannot be explained by a thickness variation.We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS.We then document,for the first time,the existence of a short-range damaged area,which is independent of the application of an optical aperture on the laser path.Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.展开更多
Epithelial-mesenchymal transition(EMT)is a vital pathological feature of silica-induced pulmonary fibrosis.However,whether circRNA is involved in the process remains unclear.The present study aimed to investigate the ...Epithelial-mesenchymal transition(EMT)is a vital pathological feature of silica-induced pulmonary fibrosis.However,whether circRNA is involved in the process remains unclear.The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms.We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells.The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm.RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p.Furthermore,we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3(TCF3),an E-cadherin transcriptional repressor,in the silica-treated epithelial cells.Collectively,these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells.Once validated,this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.展开更多
Objective Hepatocellular carcinoma(HCC)is the third leading cause of cancer-associated death worldwide.As a first-line drug for advanced HCC treatment,lenvatinib faces a significant hurdle due to the development of bo...Objective Hepatocellular carcinoma(HCC)is the third leading cause of cancer-associated death worldwide.As a first-line drug for advanced HCC treatment,lenvatinib faces a significant hurdle due to the development of both intrinsic and acquired resistance among patients,and the underlying mechanism remains largely unknown.The present study aims to identify the pivotal gene responsible for lenvatinib resistance in HCC,explore the potential molecular mechanism,and propose combinatorial therapeutic targets for HCC management.Methods Cell viability and colony formation assays were conducted to evaluate the sensitivity of cells to lenvatinib and dicoumarol.RNA-Seq was used to determine the differences in transcriptome between parental cells and lenvatinib-resistant(LR)cells.The upregulated genes were analyzed by GO and KEGG analyses.Then,qPCR and Western blotting were employed to determine the relative gene expression levels.Afterwards,the intracellular reactive oxygen species(ROS)and apoptosis were detected by flow cytometry.Results PLC-LR and Hep3B-LR were established.There was a total of 116 significantly upregulated genes common to both LR cell lines.The GO and KEGG analyses indicated that these genes were involved in oxidoreductase and dehydrogenase activities,and reactive oxygen species pathways.Notably,NAD(P)H:quinone oxidoreductase 1(NQO1)was highly expressed in LR cells,and was involved in the lenvatinib resistance.The high expression of NQO1 decreased the production of ROS induced by lenvatinib,and subsequently suppressed the apoptosis.The combination of lenvatinib and NQO1 inhibitor,dicoumarol,reversed the resistance of LR cells.Conclusion The high NQO1 expression in HCC cells impedes the lenvatinib-induced apoptosis by regulating the ROS levels,thereby promoting lenvatinib resistance in HCC cells.展开更多
Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic ac...Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.展开更多
BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchym...BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.展开更多
A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the...A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the protective capacity of the saponins extracted from panax ginseng and its primary active ingredient ginsenosideRg1oncerebral ischemic injury.Methods:Fetal rat neurons(FRNs)were cultured in glucose-and-serumfree medium and exposed to hypoxia to establish a cerebral ischemia model in vitro(oxygen and glucose deprivation model,OGD).Antioxidant indexes(CAT,SOD),inflammatory markers(MPO,TNF-αand IL-6),and the expression of apoptosis and proliferation associated proteins(NF kB-p65,Caspase 3-cleaved,BCL-2)were examined.Results:Pre-treatment of Rg1(30–100μg/mL)could effectively inhibit the decline of antioxidant indexes(CAT,SOD)and increase in inflammatory markers(MPO,TNF-αand IL-6),and effectively inhibited the apoptosis in FRNs induced by OGD in a gradient-dependent manner.The mechanism analysis showed that the role of Rg1 in protecting against ischemia-induced neuron damage depends on its indirect up-regulation of PPAR protein via suppression of rnomiRNA-27a-3p.Moreover,these effects of Rg1 could be reversed by exogenous rno-miRNA-27a-3p and PPAR gene silencing in FRNs exposed to OGD.Conclusion:To summarize,our study demonstrates that Rg1 could effectively attenuate neuronal damage caused by cerebral ischemia via the rno-miRNA-27a-3p/PPARγpathway.Further,clarification of the novel mechanism will certainly improve our previous understanding of the role of Rg1 and enhancing its level in treatments for alleviating ischemic brain injury.展开更多
BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METH...BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.展开更多
基金the DFG research training group GRK 1896 at Erlangen University and from the Joint Project Helmholtz-Institute Erlangen-Nürnberg(HI-ERN)for Renewable Energy Production under Project DBF01253,respectivelyfinancial support through the“Aufbruch Bayern”initiative of the state of Bavaria(EnCN and Solar Factory of the Future)and the“Solar Factory of the Future”with the Energy Campus Nürnberg(EnCN).
文摘In this report,we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1-x)Se2(CIGS)modules.In this way,we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished.Specifically,by analyzing the standard P1 patterning line ablated before the CIGS deposition,we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath.We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope(SEM)cross-section,where a reduction of the photoemission cannot be explained by a thickness variation.We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS.We then document,for the first time,the existence of a short-range damaged area,which is independent of the application of an optical aperture on the laser path.Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.
基金funded by the National Natural Science Foundation of China(Grant No.82073518).
文摘Epithelial-mesenchymal transition(EMT)is a vital pathological feature of silica-induced pulmonary fibrosis.However,whether circRNA is involved in the process remains unclear.The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms.We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells.The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm.RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p.Furthermore,we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3(TCF3),an E-cadherin transcriptional repressor,in the silica-treated epithelial cells.Collectively,these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells.Once validated,this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
基金supported by the Global Select Project(No.DJK-LX-2022001)of the Institute of Health and Medicine,Hefei Comprehensive National Science Center.
文摘Objective Hepatocellular carcinoma(HCC)is the third leading cause of cancer-associated death worldwide.As a first-line drug for advanced HCC treatment,lenvatinib faces a significant hurdle due to the development of both intrinsic and acquired resistance among patients,and the underlying mechanism remains largely unknown.The present study aims to identify the pivotal gene responsible for lenvatinib resistance in HCC,explore the potential molecular mechanism,and propose combinatorial therapeutic targets for HCC management.Methods Cell viability and colony formation assays were conducted to evaluate the sensitivity of cells to lenvatinib and dicoumarol.RNA-Seq was used to determine the differences in transcriptome between parental cells and lenvatinib-resistant(LR)cells.The upregulated genes were analyzed by GO and KEGG analyses.Then,qPCR and Western blotting were employed to determine the relative gene expression levels.Afterwards,the intracellular reactive oxygen species(ROS)and apoptosis were detected by flow cytometry.Results PLC-LR and Hep3B-LR were established.There was a total of 116 significantly upregulated genes common to both LR cell lines.The GO and KEGG analyses indicated that these genes were involved in oxidoreductase and dehydrogenase activities,and reactive oxygen species pathways.Notably,NAD(P)H:quinone oxidoreductase 1(NQO1)was highly expressed in LR cells,and was involved in the lenvatinib resistance.The high expression of NQO1 decreased the production of ROS induced by lenvatinib,and subsequently suppressed the apoptosis.The combination of lenvatinib and NQO1 inhibitor,dicoumarol,reversed the resistance of LR cells.Conclusion The high NQO1 expression in HCC cells impedes the lenvatinib-induced apoptosis by regulating the ROS levels,thereby promoting lenvatinib resistance in HCC cells.
基金financially supported by National Natural Science Foundation of China(81700524)Natural Science Foundation of Fujian Province(2022J01866)from Fujian Provincial Department of Science and Technology+1 种基金Key Project of Fujian University of Traditional Chinese Medicine(X2021019)Collaborative Innovation and Platform Establishment Project of Department of Science and Technology of Guangdong Province(2019A050520003)。
文摘Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.
基金Supported by the National Natural Science Foundation of China,No.82172462,No.81972136the Traditional Chinese Medicine Science and Technology Development Plan Project of Jiangsu Province,No.YB2020085Cross Cooperation Project of Northern Jiangsu People’s Hospital,No.SBJC21014.
文摘BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD.
基金supported by the National Natural Science Foundation of China,Nos.81973317,81374007,81870977the Natural Science Foundation of Heilongjiang Province,HL2019H062+1 种基金the Projects of Basic Scientific Research Business Expenses in Higher Education Institutions of Heilongjiang Province,No.2018-KYYWF-MY-005the Students Innovative and the Entrepreneurship Training Scientific Research Foundation of Heilongjiang Province,No.102292017001.
文摘A preliminary miRNA screening showed that expression levels of rno-miRNA-27a-3p were significantly increased in the serum and brain tissues of rats undergoing cerebral ischemia.In recent years,there is evidence of the protective capacity of the saponins extracted from panax ginseng and its primary active ingredient ginsenosideRg1oncerebral ischemic injury.Methods:Fetal rat neurons(FRNs)were cultured in glucose-and-serumfree medium and exposed to hypoxia to establish a cerebral ischemia model in vitro(oxygen and glucose deprivation model,OGD).Antioxidant indexes(CAT,SOD),inflammatory markers(MPO,TNF-αand IL-6),and the expression of apoptosis and proliferation associated proteins(NF kB-p65,Caspase 3-cleaved,BCL-2)were examined.Results:Pre-treatment of Rg1(30–100μg/mL)could effectively inhibit the decline of antioxidant indexes(CAT,SOD)and increase in inflammatory markers(MPO,TNF-αand IL-6),and effectively inhibited the apoptosis in FRNs induced by OGD in a gradient-dependent manner.The mechanism analysis showed that the role of Rg1 in protecting against ischemia-induced neuron damage depends on its indirect up-regulation of PPAR protein via suppression of rnomiRNA-27a-3p.Moreover,these effects of Rg1 could be reversed by exogenous rno-miRNA-27a-3p and PPAR gene silencing in FRNs exposed to OGD.Conclusion:To summarize,our study demonstrates that Rg1 could effectively attenuate neuronal damage caused by cerebral ischemia via the rno-miRNA-27a-3p/PPARγpathway.Further,clarification of the novel mechanism will certainly improve our previous understanding of the role of Rg1 and enhancing its level in treatments for alleviating ischemic brain injury.
文摘BACKGROUND The molecular mechanisms of colorectal cancer development and progression are far from being elucidated.AIM To investigate the role of microRNA-363-3p(miR-363-3p)in the progression of colorectal cancer.METHODS Real-time polymerase chain reaction was performed to detect miRNA expression in human colorectal cancer tissues and paired normal colorectal tissues.PITA 6 was utilized to predict the targets of miR-363-3p.Dual-luciferase reporter system was used to validate the target of miR-363-3p.Plate colony formation assay and wound-healing assay were performed to evaluate cancer cells’clonogenic survival ability and migration ability,respectively.Cell proliferation was examined by cell counting kit-8 assay.Immunohistochemical staining was used to determine the expression level of interferon-induced transmembrane protein 1(IFITM1)in colorectal cancer tissues and adjacent tissues.The TCGA and GTEx databases were used to compare the expression levels of IFITM1 mRNA in colorectal cancer tissues and normal colorectal tissues and analyze the correlation between the expression levels of IFITM1 mRNA and overall survival and disease-free survival of patients.A colorectal cancer cell line with a deficiency of IFITM1 was constructed,and the regulation effect of IFITM1 on the clonogenic growth of colorectal cancer cells was clarified.RESULTS MiR-363-3p was decreased in colorectal cancer tissues compared to normal colorectal tissues.IFITM1 was characterized as a direct target of miR-363-3p.Overexpression of miR-363-3p led to decreased clonogenic survival,proliferation,and migration of colorectal cancer cells,which could be reversed by forced IFITM1 expression.CONCLUSION MiR-363-3p can constrain clonogenic survival,proliferation,and migration of colorectal cancer cells via targeting IFITM1.