本研究旨在深度剖析长链非编码RNA P53和P21在大鼠动脉粥样硬化模型中的作用及应用潜能。择取60只大鼠,随机平均划分为正常组与粥样硬化组,借由构建大鼠动脉粥样硬化模型,综合运用多种实验技术(如免疫组织化学染色、实时荧光定量PCR、...本研究旨在深度剖析长链非编码RNA P53和P21在大鼠动脉粥样硬化模型中的作用及应用潜能。择取60只大鼠,随机平均划分为正常组与粥样硬化组,借由构建大鼠动脉粥样硬化模型,综合运用多种实验技术(如免疫组织化学染色、实时荧光定量PCR、蛋白质印迹法、酶联免疫分析等)及仪器(如彩色多普勒超声诊断仪),对两组中P53和P21的表达状况、调控机制及其与疾病演进的关联予以系统性且全方位的解析。研究成果有望为动脉粥样硬化的诊断与治疗提供新颖且极具价值的靶点与策略。This study aims to deeply analyze the role and application potential of long non-coding RNA P53 and P21 in rat atherosclerosis model. 60 rats were selected and randomly divided into normal group and atherosclerosis group. By constructing rat atherosclerosis model, a variety of experimental techniques (such as immunohistochemistry staining, real-time fluorescence quantitative PCR, protein blotting, enzyme-linked immunosorbent assay, etc.) and instruments (such as color Doppler ultrasound diagnostic instrument) were used to systematically and comprehensively analyze the expression status, regulatory mechanism and relationship between P53 and P21 and disease progression in the two groups. The research results are expected to provide novel and valuable targets and strategies for the diagnosis and treatment of atherosclerosis.展开更多
Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential ...Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.展开更多
文摘本研究旨在深度剖析长链非编码RNA P53和P21在大鼠动脉粥样硬化模型中的作用及应用潜能。择取60只大鼠,随机平均划分为正常组与粥样硬化组,借由构建大鼠动脉粥样硬化模型,综合运用多种实验技术(如免疫组织化学染色、实时荧光定量PCR、蛋白质印迹法、酶联免疫分析等)及仪器(如彩色多普勒超声诊断仪),对两组中P53和P21的表达状况、调控机制及其与疾病演进的关联予以系统性且全方位的解析。研究成果有望为动脉粥样硬化的诊断与治疗提供新颖且极具价值的靶点与策略。This study aims to deeply analyze the role and application potential of long non-coding RNA P53 and P21 in rat atherosclerosis model. 60 rats were selected and randomly divided into normal group and atherosclerosis group. By constructing rat atherosclerosis model, a variety of experimental techniques (such as immunohistochemistry staining, real-time fluorescence quantitative PCR, protein blotting, enzyme-linked immunosorbent assay, etc.) and instruments (such as color Doppler ultrasound diagnostic instrument) were used to systematically and comprehensively analyze the expression status, regulatory mechanism and relationship between P53 and P21 and disease progression in the two groups. The research results are expected to provide novel and valuable targets and strategies for the diagnosis and treatment of atherosclerosis.
文摘Objective Endometrial carcinoma(EC)is a prevalent gynecological malignancy characterized by increasing incidence and mortality rates.This underscores the critical need for novel therapeutic targets.One such potential target is cell division cycle 20(CDC20),which has been implicated in oncogenesis.This study investigated the effect of the CDC20 inhibitor Apcin on EC and elucidated the underlying mechanism involved.Methods The effects of Apcin on EC cell proliferation,apoptosis,and the cell cycle were evaluated using CCK8 assays and flow cytometry.RNA sequencing(RNA-seq)was subsequently conducted to explore the underlying molecular mechanism,and Western blotting and coimmunoprecipitation were subsequently performed to validate the results.Animal studies were performed to evaluate the antitumor effects in vivo.Bioinformatics analysis was also conducted to identify CDC20 as a potential therapeutic target in EC.Results Treatment with Apcin inhibited proliferation and induced apoptosis in EC cells,resulting in cell cycle arrest.Pathways associated with apoptosis and the cell cycle were activated following treatment with Apcin.Notably,Apcin treatment led to the upregulation of the cell cycle regulator p21,which was verified to interact with CDC20 and consequently decrease the expression of downstream cyclins in EC cells.In vivo experiments confirmed that Apcin treatment significantly impeded tumor growth.Higher CDC20 expression was observed in EC tissue than in nonmalignant tissue,and increased CDC20 expression in EC patients was associated with shorter overall survival and progress free interval.Conclusion CDC20 is a novel molecular target in EC,and Apcin could be developed as a candidate antitumor drug for EC treatment.