Polycrystalline gallium nitride(GaN) thin films were deposited on Si(100) substrates via plasma-enhanced atomic layer deposition(PEALD) under optimal deposition parameters. In this work, we focus on the research of th...Polycrystalline gallium nitride(GaN) thin films were deposited on Si(100) substrates via plasma-enhanced atomic layer deposition(PEALD) under optimal deposition parameters. In this work, we focus on the research of the GaN/Si(100)interfacial properties. The x-ray reflectivity measurements show the clearly-resolved fringes for all the as-grown GaN films, which reveals a perfectly smooth interface between the GaN film and Si(100), and this feature of sharp interface is further confirmed by high resolution transmission electron microscopy(HRTEM). However, an amorphous interfacial layer(~ 2 nm) can be observed from the HRTEM images, and is determined to be mixture of Ga_xO_y and GaN by xray photoelectron spectroscopy. To investigate the effect of this interlayer on the GaN growth, an AlN buffer layer was employed for GaN deposition. No interlayer is observed between GaN and AlN, and GaN shows better crystallization and lower oxygen impurity during the initial growth stage than the GaN with an interlayer.展开更多
SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output p...SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output power of the LED because the first Al2O3 layer plays a role of effectively passivating the p-GaN surface and the second lower index SiO2 layer increases the critical angle of the light emitted from the LED surface. In addition, the effect of the Fresnel reflection is also responsible for the enhancement in output power of the double dielectric passivated LED. The leakage current of the LED passivated with Al2O3 layer was -3.46 × 10-11 A at -5 V, at least two and three orders lower in magnitude compared to that passivated with SiO2 layer (-7.14 × 10-9 A) and that of non-passivated LED (-1.9 × 10-8 A), respectively, which indicates that the Al2O3 layer is very effective in passivating the exposed GaN surface after dry etch and hence reduces nonradiative recombination as well as reabsorption of the emitted light near the etched surface.展开更多
A1GaN/GaN high electron-mobility transistors (HEMTs) with 5 nm A1N passivation by plasma en- hanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemica...A1GaN/GaN high electron-mobility transistors (HEMTs) with 5 nm A1N passivation by plasma en- hanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemical vapor deposition (PECVD). With PEALD A1N passivation, current collapse was suppressed more effectively and the devices show better subthreshold characteristics. Moreover, the insertion of A1N increased the RF transconductance, which lead to a higher cut-off frequency. Temperature dependence of DC characteristics demonstrated that the degradations of drain current and maximum transconductance at elevated temperatures for the A1N/SiNx passivated devices were much smaller compared with the devices with SiNx passivation, indicating that PEALD A1N passivation can improve the high temperature operation of the A1GaN/GaN HEMTs.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities(Grant Nos.FRF-BR-16-018A,FRF-TP-17-022A1,and FRF-TP-17-069A1)the National Natural Science Foundation of China(Grant Nos.61274134 and 51402064)+4 种基金USTB Start-up Program(Grant No.06105033)China Postdoctoral Science Foundation(Grant No.2018M631333)Beijing Natural Science Foundation(Grant Nos.2184112 and 4173077)Beijing Innovation and Research Base Fund(Grant No.Z161100005016095)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2015387)
文摘Polycrystalline gallium nitride(GaN) thin films were deposited on Si(100) substrates via plasma-enhanced atomic layer deposition(PEALD) under optimal deposition parameters. In this work, we focus on the research of the GaN/Si(100)interfacial properties. The x-ray reflectivity measurements show the clearly-resolved fringes for all the as-grown GaN films, which reveals a perfectly smooth interface between the GaN film and Si(100), and this feature of sharp interface is further confirmed by high resolution transmission electron microscopy(HRTEM). However, an amorphous interfacial layer(~ 2 nm) can be observed from the HRTEM images, and is determined to be mixture of Ga_xO_y and GaN by xray photoelectron spectroscopy. To investigate the effect of this interlayer on the GaN growth, an AlN buffer layer was employed for GaN deposition. No interlayer is observed between GaN and AlN, and GaN shows better crystallization and lower oxygen impurity during the initial growth stage than the GaN with an interlayer.
基金National Ministry of Science and Technology“13thFive-Year”Key Research and Development Program Sub Project for High Performance Computing(2016YFB0200205)2018 Shanghai Public R&D Service Center Construction Project(18DZ2295400)
文摘SiO2Al2O3 double dielectric stack layer was deposited on the surface of the GaN-based light-emitting diode (LED). The double dielectric stack layer enhances both the electrical characteristics and the optical output power of the LED because the first Al2O3 layer plays a role of effectively passivating the p-GaN surface and the second lower index SiO2 layer increases the critical angle of the light emitted from the LED surface. In addition, the effect of the Fresnel reflection is also responsible for the enhancement in output power of the double dielectric passivated LED. The leakage current of the LED passivated with Al2O3 layer was -3.46 × 10-11 A at -5 V, at least two and three orders lower in magnitude compared to that passivated with SiO2 layer (-7.14 × 10-9 A) and that of non-passivated LED (-1.9 × 10-8 A), respectively, which indicates that the Al2O3 layer is very effective in passivating the exposed GaN surface after dry etch and hence reduces nonradiative recombination as well as reabsorption of the emitted light near the etched surface.
基金Project supported by the National Natural Science Foundation of China(No.60890192)
文摘A1GaN/GaN high electron-mobility transistors (HEMTs) with 5 nm A1N passivation by plasma en- hanced atomic layer deposition (PEALD) were fabricated, covered by 50 nm SiNx which was grown by plasma enhanced chemical vapor deposition (PECVD). With PEALD A1N passivation, current collapse was suppressed more effectively and the devices show better subthreshold characteristics. Moreover, the insertion of A1N increased the RF transconductance, which lead to a higher cut-off frequency. Temperature dependence of DC characteristics demonstrated that the degradations of drain current and maximum transconductance at elevated temperatures for the A1N/SiNx passivated devices were much smaller compared with the devices with SiNx passivation, indicating that PEALD A1N passivation can improve the high temperature operation of the A1GaN/GaN HEMTs.