A new kind of high performance composite resin matrix PEEK/PES, PEEKK/PES block copolymers have been prepared from the corresponding oligomers via a nucleophilic aromatic substitution reaction. The different propertie...A new kind of high performance composite resin matrix PEEK/PES, PEEKK/PES block copolymers have been prepared from the corresponding oligomers via a nucleophilic aromatic substitution reaction. The different properties of the copolymers are investigated by differential scanning calorimetry (d. s. c), thermogravimetric analysis (t. g. a) and dynamic mechanical analysis (d. m. a). The results show that the relationship between Tg and the compositions of the copolymers approximately follows the formula 1/Tg=W1/Tg1 +W2/Tg2 for PEEKK/PES block copolymers, and Tg=Tg1W1 +Tg2W2 for PEEK/PES block copolymers. The PES content and the segment length of the copolymers have a significant influence on their melting point. The thermal properties and dynamic mechanical behaviour of the copolymers are also studied. The introduction of PES segment into the molecular main chain increases the glass transition temperature of poly aryl ether ketones and decreases their melting temperature, that is to say it decreases their melting processing temperature. The block copolymers keep the high temperature stability and solvent resistance of poly aryl ether ketones. They are expected to be a new kind of high performance composite resin matrix.展开更多
文摘A new kind of high performance composite resin matrix PEEK/PES, PEEKK/PES block copolymers have been prepared from the corresponding oligomers via a nucleophilic aromatic substitution reaction. The different properties of the copolymers are investigated by differential scanning calorimetry (d. s. c), thermogravimetric analysis (t. g. a) and dynamic mechanical analysis (d. m. a). The results show that the relationship between Tg and the compositions of the copolymers approximately follows the formula 1/Tg=W1/Tg1 +W2/Tg2 for PEEKK/PES block copolymers, and Tg=Tg1W1 +Tg2W2 for PEEK/PES block copolymers. The PES content and the segment length of the copolymers have a significant influence on their melting point. The thermal properties and dynamic mechanical behaviour of the copolymers are also studied. The introduction of PES segment into the molecular main chain increases the glass transition temperature of poly aryl ether ketones and decreases their melting temperature, that is to say it decreases their melting processing temperature. The block copolymers keep the high temperature stability and solvent resistance of poly aryl ether ketones. They are expected to be a new kind of high performance composite resin matrix.