考虑系数矩阵含非随机元素和不同位置含相同随机元素的结构化特征,PEIV (partial errors-in-variables)模型较一般的EIV模型更为严格。现有PEIV模型加权整体最小二乘(weighted total least squares,WTLS)估计算法需多次迭代,影响计算效...考虑系数矩阵含非随机元素和不同位置含相同随机元素的结构化特征,PEIV (partial errors-in-variables)模型较一般的EIV模型更为严格。现有PEIV模型加权整体最小二乘(weighted total least squares,WTLS)估计算法需多次迭代,影响计算效率。通过利用观测值误差和系数矩阵误差的统计性质构造非线性目标函数,并以此推导了新的PEIV模型WTLS估计的计算公式,同时设计了相应的Fisher-Score算法。算例分析结果表明,相比较而言,Fisher-Score算法迭代次数较少,计算效率得到大大提升。展开更多
文摘考虑系数矩阵含非随机元素和不同位置含相同随机元素的结构化特征,PEIV (partial errors-in-variables)模型较一般的EIV模型更为严格。现有PEIV模型加权整体最小二乘(weighted total least squares,WTLS)估计算法需多次迭代,影响计算效率。通过利用观测值误差和系数矩阵误差的统计性质构造非线性目标函数,并以此推导了新的PEIV模型WTLS估计的计算公式,同时设计了相应的Fisher-Score算法。算例分析结果表明,相比较而言,Fisher-Score算法迭代次数较少,计算效率得到大大提升。