Proton exchange membrane fuel cell(PEMFC) as a power supply device has attracted wide attention in China and abroad for its advantages of high energy density, energy conversion efficiency and zero pollution.With the v...Proton exchange membrane fuel cell(PEMFC) as a power supply device has attracted wide attention in China and abroad for its advantages of high energy density, energy conversion efficiency and zero pollution.With the vigorous support of China's national policy, research institutes and enterprises have carried out extensive and pragmatic work on the basic materials, key components, stacks, auxiliary systems of PEMFCs, as well as the hydrogen station construction in order to realize the wide application of hydrogen energy.PEMFC System and Engineering Research Center of DICP is one of the earliest players in the H2-PEMFCs field.Advances have been achieved in the fields of low-platinum contained catalysts,PEMs, high-efficiency MEAs, low-cost metal bipolar plates, low-temperature and impurity air environment adaptability, stacks and systems.This paper introduces recent progresses of H2-PEMFCs at DICP in key materials, components, stacks, systems and the applications.The engineering status of proton exchange membrane water electrolysis(PEMWE) and the alkaline anion exchange membrane fuel cells(AEMFCs)are also summarized.展开更多
A new membrane electrolyte assembly (MEA) preparation method for polymer electrolyte membrane fuel cell (PEMFC) was developed by applying the directly printing catalyst on membrane technique.This method was simple and...A new membrane electrolyte assembly (MEA) preparation method for polymer electrolyte membrane fuel cell (PEMFC) was developed by applying the directly printing catalyst on membrane technique.This method was simple and easy to be controlled as verified by repetition experiment. When the membrane with catalyst prepared by the new technique and the electrode with diffusion layer was only sandwiched but not hot pressed, this kind of MEA was called not-hot-press MEA (NPMEA) and its fuel cell performance was better than that of MEA which was hot pressed (HPMEA).The effects of 6 different kinds of solvents in catalyst mixture ink on the performance of fuel cell were assessed.It was discovered that iso-propanol was the best solvent in catalyst mixture ink and showed the best performance of fuel cell. Finally several MEAs prepared by different ways were tested on fuel cell station and it was reported that the performance of MEA prepared by the directly printing catalyst on membrane technique was the best in the whole voltage region.展开更多
Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going o...Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going on work at highest temperature. There isn't a PEMFC which can run at room temperature, like 20 ℃. In this study there is a aim for constructing such one for alternative fuels utilisation. PS and many electroconducting polymer formulations were proved by different researchers for PEM benefications, but here PS was synthesized without containing metalic contaminants and after converted to the PEM membrane.展开更多
基金supported by the National Key Research and Development Program of China(2016YFB0101207)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB06050303)the Natural Science Foundation of China(U1664259)
文摘Proton exchange membrane fuel cell(PEMFC) as a power supply device has attracted wide attention in China and abroad for its advantages of high energy density, energy conversion efficiency and zero pollution.With the vigorous support of China's national policy, research institutes and enterprises have carried out extensive and pragmatic work on the basic materials, key components, stacks, auxiliary systems of PEMFCs, as well as the hydrogen station construction in order to realize the wide application of hydrogen energy.PEMFC System and Engineering Research Center of DICP is one of the earliest players in the H2-PEMFCs field.Advances have been achieved in the fields of low-platinum contained catalysts,PEMs, high-efficiency MEAs, low-cost metal bipolar plates, low-temperature and impurity air environment adaptability, stacks and systems.This paper introduces recent progresses of H2-PEMFCs at DICP in key materials, components, stacks, systems and the applications.The engineering status of proton exchange membrane water electrolysis(PEMWE) and the alkaline anion exchange membrane fuel cells(AEMFCs)are also summarized.
文摘A new membrane electrolyte assembly (MEA) preparation method for polymer electrolyte membrane fuel cell (PEMFC) was developed by applying the directly printing catalyst on membrane technique.This method was simple and easy to be controlled as verified by repetition experiment. When the membrane with catalyst prepared by the new technique and the electrode with diffusion layer was only sandwiched but not hot pressed, this kind of MEA was called not-hot-press MEA (NPMEA) and its fuel cell performance was better than that of MEA which was hot pressed (HPMEA).The effects of 6 different kinds of solvents in catalyst mixture ink on the performance of fuel cell were assessed.It was discovered that iso-propanol was the best solvent in catalyst mixture ink and showed the best performance of fuel cell. Finally several MEAs prepared by different ways were tested on fuel cell station and it was reported that the performance of MEA prepared by the directly printing catalyst on membrane technique was the best in the whole voltage region.
文摘Polymer exchange membrane fuel cells (PEMFC) are objects of the current engineering technology and these are versatile generators for electrical energy. There are various kinds from them, but all of them are going on work at highest temperature. There isn't a PEMFC which can run at room temperature, like 20 ℃. In this study there is a aim for constructing such one for alternative fuels utilisation. PS and many electroconducting polymer formulations were proved by different researchers for PEM benefications, but here PS was synthesized without containing metalic contaminants and after converted to the PEM membrane.