In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it...In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.展开更多
文摘In this paper a trial has been made to design a simple self-tuning LabVIEW-based PID controller. The controller uses an open-loop relay test, calculates the tuned parameters in an open loop mode of operation before it updates controller parameters and runs the process as a closed-loop system. The controller reacts on a persistent offset error value as a result of load disturbance or a set point change. Practical results show that such a controller may be recommended to control a variety of industrial processes. A GUI was developed to facilitate control-mode selection, the setting of controller parameters, and the display of control system variables. GUI makes it possible to put the controller in manual or self-tuning mode.
文摘针对观察型水下机器人在水下运动时易受暗流、波浪影响,造成操控困难、系统稳定性差等问题,建立遥控水下机器人(Remotely Operated Vehicle,ROV)不同运动的控制模型,考虑电机和导管螺旋桨推进器的传递函数对ROV控制系统的影响,确定定艏向和定深控制系统的闭环传递函数,结合模糊控制和比例积分微分(Proportional Integral Differential,PID)控制法,得到模糊PID控制器,基于MATLAB/Simulink环境进行ROV定深度运动仿真和ROV水平面艏向定偏角运动仿真。结果表明,与传统PID控制相比,模糊PID控制具有更优的ROV定艏向和定深度控制效果,不会发生超调现象,在抗干扰能力和响应速度方面具有明显的优势,可有效地实现ROV定艏向和定深度运动控制。