期刊文献+
共找到579篇文章
< 1 2 29 >
每页显示 20 50 100
The Publication of the Piling Canon in the Late Qing
1
作者 LIU Yi 《Cultural and Religious Studies》 2024年第9期566-574,共9页
Piling Canon refers to a woodblock-printed Chinese Buddhist Canon during the late Qing Dynasty.Despite its historical significance,it has received limited attention from the academia,as its discovery took place after ... Piling Canon refers to a woodblock-printed Chinese Buddhist Canon during the late Qing Dynasty.Despite its historical significance,it has received limited attention from the academia,as its discovery took place after the turn of the 21st century.This study explores the background,supervisor,proofreader,engravers,donors,and other factors that contributed to the publication of the Piling Canon.It was supervised by Buddhist monk Qingrong in Changzhou Tianning Monastery from 1908 to 1926,due to the commission of Yang Wenhui.By investigating the historical records in the colophons of Piling Canon,we found that engraving locations are distributed in Hubei,Yangzhou,and Danyang which engravers operated in groups;the majority of donors were found to be individuals and group forms,social fundraising was included as well.It is noteworthy that Sheng Xuanhuai made a significant contribution in terms of funding.Furthermore,the production of the Piling Canon confirms to the commence of Buddhism revival,as Buddhist scriptures in Jiangnan regions were almost destroyed after the Taiping Rebellion.The research shed light on extensive participation of cultural celebrities,diverse donation forms,and excellent engraving,offering a vivid depiction of Buddhist belief and social landscape in Jiangnan region. 展开更多
关键词 piling Canon Buddhist scriptures Tianning Monastery DONORS Jiangnan
下载PDF
Port and Marine Structures Made of Sheet Piling with Staggered Toe
2
作者 Doubrovsky Michael Kaluzhnaya Valentina +3 位作者 Adamchuk Nikolay Khonelia Natela Kaluzhniy Aleksey Dubrovska Olga 《Journal of Shipping and Ocean Engineering》 2017年第4期168-173,共6页
Some new approaches to designing and calculation of maritime structures made of sheet piling with staggered toe are considered and discussed. Obtained results allow determination of piles spacing efficiency in stagger... Some new approaches to designing and calculation of maritime structures made of sheet piling with staggered toe are considered and discussed. Obtained results allow determination of piles spacing efficiency in staggered embedment wall. The specificity of interaction of piles in "comb" with the soil foundation Practical application is illustrated by example of calculation. regarding transition from continuous to "comb" wall is investigated. 展开更多
关键词 Sheet piling quay wall staggered toe driving depth.
下载PDF
Improvement of Technological Solutions for Sheet Piling Walls Made of U-Shape Piles
3
《Journal of Civil Engineering and Architecture》 2017年第4期335-341,共7页
As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences th... As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences the realization of the values of geometric characteristics of the piles cross-section (the moment of inertia and the section modulus) reduced to the length unit of the construction. The article offers new and simple solutions for realization and economically effective technological approaches to provide joint work of the sheet piles being considered, which improve the adequacy of design and reliability of maintenance of thin retaining walls. 展开更多
关键词 Sheet piling walls steel U-shape piles interlock connections.
下载PDF
Optimal Piling Network Corrosion Protection System for Al-Zubair Harbor
4
作者 Mohammed H. Hafiz Wisam K. Hamdan Ruaa Kaream Salman 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第4期249-257,共9页
Cathodic protection is an effective electrochemical technique for preventing corrosion of metallic structures, for large structures like piles network impressed current cathodic protection (ICCP) system is usually pre... Cathodic protection is an effective electrochemical technique for preventing corrosion of metallic structures, for large structures like piles network impressed current cathodic protection (ICCP) system is usually preferred. The main aim of this study is to obtain the optimum protection potential that would provide a full cathodic protection for steel piles net-work immersed in sea water at Al-Zubair harbor. The effect of one immeasurable factor (path of anode (χ1)) and two measurable factors (position of anode (χ2) and voltage of power supply (χ3)) on protection potential are studied. Each factor has three different levels (high, medium, and low). Twenty-seven experiments were conducted based on a full factorial design of experiments. The results show that, a sufficient protection for three cathodes can be provided through the electrical circuit connecting them within the appropriate geometric shape.The protection potential is icreased with increasing the voltage of power supply and decreasing of distance between the anode and cathodes (piles network). 展开更多
关键词 Impressed Current Cathodic Protection PILES NETWORK Path of ANODE Position of ANODE OPTIMAL Combination
下载PDF
Track Bed Total Route Evaluation for Track Renewals&Asset Management“A Network Rail Perspective”
5
作者 Peter Musgrave 《Journal of Traffic and Transportation Engineering》 2024年第5期238-247,共10页
Over the last 10 years there have been significant developments and improvements in the understanding of railway track bed in the UK and its relationship and impact on track quality,ballast life and maintenance follow... Over the last 10 years there have been significant developments and improvements in the understanding of railway track bed in the UK and its relationship and impact on track quality,ballast life and maintenance following track renewals.This paper aims to describe the process adopted by Network Rail for track bed investigation and design which offers Network Rail optimum design solutions and value for money from an investigation and construction perspective,balancing design with possession availability to maximise construction output.It also describes innovative investigation and construction techniques that have been developed over the last 5 years maximising the use of rail mounted asset condition data collection systems which run at line speed,allowing targeted investigations and in some case removing the requirements for physical site investigation.It also allows Network Rail to predict sections of track bed which may be affected by line speed increases which would cause the track bed to fail prematurely or,retain its ability to maintain good track geometry post line speed increase.These problems can manifest themselves as stiffness related problems such as critical velocity issues(surface wave velocity,Rayleigh Wave velocity)or,sub-grade erosion resulting in high rates of deterioration in the vertical track geometry.The paper also describes the development and installation process for Enhanced Axial Micropiles to address stiffness related track bed problems whilst leaving the track in-situ a technique which is new to the UK railways. 展开更多
关键词 Track bed data analysis route evaluation asset management track bed piling and design
下载PDF
Fiber optic monitoring of an anti-slide pile in a retrogressive landslide 被引量:3
6
作者 Lei Zhang Honghu Zhu +1 位作者 Heming Han Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期333-343,共11页
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods... Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions. 展开更多
关键词 Anti-slide pile Multi-sliding surface Pile-soil interface Brillouin optical time domain reflectometry (BOTDR) Geotechnical monitoring Reservoir landslide
下载PDF
考虑锚杆拉剪破断特性的锚固系统数值模拟与应用
7
作者 路燕泽 田欣 +3 位作者 于庆磊 王立杰 王庆刚 蒲江涌 《煤炭技术》 CAS 2024年第10期66-70,共5页
基于FLAC3D数值模拟软件,考虑锚杆拉剪破断特性,通过FISH语言将pile单元进行修正,反映了锚杆的拉剪破断特性;并且引入了锚固界面的黏结滑移模型,模拟了锚固界面的应变软化行为。将修正的锚杆模型进行验证分析,与室内试验结果吻合良好,... 基于FLAC3D数值模拟软件,考虑锚杆拉剪破断特性,通过FISH语言将pile单元进行修正,反映了锚杆的拉剪破断特性;并且引入了锚固界面的黏结滑移模型,模拟了锚固界面的应变软化行为。将修正的锚杆模型进行验证分析,与室内试验结果吻合良好,且能够较好地反映锚固界面的黏结滑移力学行为和锚杆杆体的破断行为。以中关铁矿为研究对象,开展了修正锚杆模型的应用研究,研究结果可为地下锚固工程稳定性分析提供借鉴。 展开更多
关键词 锚固系统 拉剪破断 黏结滑移模型 pile结构单元
原文传递
Numerical Simulation and Experimental Study on Interlock Deformation for Roll Formed U-Section Steel Piling 被引量:2
8
作者 FENG Guang-hong ZHANG Pei +2 位作者 ZHANG Hong-liang ZHOU Xu-chang ZHAO Yong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第11期41-45,共5页
The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under t... The interlock of a roll formed U-section sheet steel piling under loading was analyzed by means of numeri- cal simulation, and meanwhile the tensile failure experiment was conducted. The results indicated that under the same load, the interlock corners of roll formed steel piling are not only the regions with the lowest safety factor, but also the regions with the highest stress; there are two slippages in the tensile instability process of interlock, Each slippage can be regarded as a failure, and different types of failure mode should be used to evaluate the performance of steel pilings according to different applications. Due to the work hardening effect during the roll forming process, the hardness of the interlock material increases by 16% compared with that of the original sheet steel. It was also found that the instability strength obtained in tensile failure test is only 15.6 % of the tensile strength of the original sheet steel. 展开更多
关键词 roll formed sheet steel piling INTERLOCK numerical simulation INSTABILITY
原文传递
High-strain dynamic model of large-diameter pipe piles with soil plug for vertical vibration analysis
9
作者 Yuan Tu M.H.El Naggar +2 位作者 Kuihua Wang Wenbing Wu Minjie Wen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4440-4461,共22页
A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the... A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading. 展开更多
关键词 Fictitious-soil pile Large-diameter pipe piles Soil plug Pile vibration Elastic wave propagation High-strain dynamic analysis
下载PDF
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
10
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
下载PDF
Hybrid response surface method for system reliability analysis of pilereinforced slopes
11
作者 Xiangrui Duan Jie Zhang +2 位作者 Leilei Liu Jinzheng Hu Yadong Xue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3395-3406,共12页
To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile... To consider the complex soil-structure interaction in a pile-slope system,it is necessary to analyze the performance of pile-slope systems based on a three-dimensional(3D)numerical model.Reliability analysis of a pile-slope system based on 3D numerical modeling is very challenging because it is computationally expensive and the performance function of the pile failure mode is only defined in the safe domain of soil stability.In this paper,an efficient hybrid response surface method is suggested to study the system reliability of pile-reinforced slopes,where the support vector machine and the Kriging model are used to approximate performance functions of soil failure and pile failure,respectively.The versatility of the suggested method is illustrated in detail with an example.For the example examined in this paper,it is found that the pile failure can significantly contribute to system failure,and the reinforcement ratio can effectively reduce the probability of pile failure.There exists a critical reinforcement ratio beyond which the system failure probability is not sensitive to the reinforcement ratio.The pile spacing affects both the probabilities of soil failure and pile failure of the pile-reinforced slope.There exists an optimal location and an optimal length for the stabilizing piles. 展开更多
关键词 SLOPE PILES System reliability Support vector machine Ordinary kriging
下载PDF
Experimental Study of Local Scour Around Four Piles Under Different Attack Angles and Gap Ratios
12
作者 LIU Ming-ming TANG Guo-qiang +1 位作者 JIN Xin GENG Shao-yang 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期612-624,共13页
In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set o... In an effort to investigate and quantify the patterns of local scour,researchers embarked on an in-depth study using a systematic experimental approach.The research focused on the effects of local scour around a set of four piles,each subjected to different hydromechanical conditions.In particular,this study aimed to determine how different attack angles—the angles at which the water flow impinges on the piles,and gap ratios—the ratios of the spacing between the piles to their diameters,influence the extent and nature of scour.A comprehensive series of 35 carefully designed experiments were orchestrated,each designed to dissect the nuances in how the gap ratio and attack angle might contribute to changes in the local scour observed at the base of pile groups.During these experimental trials,a wealth of local scour data were collected to support the analysis.These data included precise topographic profiles of the sediment bed around the pile groups,as well as detailed scour time histories showing the evolution of scour at strategic feature points throughout the test procedure.The analysis of the experimental data provided interesting insights.The study revealed that the interplay between the gap ratio and the attack angle had a pronounced influence on the scouring dynamics of the pile groups.One of the key observations was that the initial phases of scour,particularly within the first hour of water flow exposure,were characterized by a sharp increase in the scour depth occurring immediately in front of the piles.After this initial rapid development,the scour depth transitioned to a more gradual change rate.In contrast,the scour topography around the piles continuously evolved.This suggests that sediment displacement and the associated sculpting of the seabed around pile foundations are sustained and progressive processes,altering the underwater landscape over time.The results of this empirical investigation have significant implications for the design and construction of offshore multi-pile foundations,providing a critical reference for engineers and designers to estimate the expected scour depth around such structures,which is an integral part of decisions regarding foundation design,selection of structural materials,and implementation of scour protection measures. 展开更多
关键词 local scour PILES gap ratio attack angle
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
13
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution Model tests
下载PDF
Pile foundation in alternate layered liquefiable and non-liquefiable soil deposits subjected to earthquake loading
14
作者 Praveen Huded M Suresh R Dash 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期359-376,共18页
Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile found... Pile foundations are still the preferred foundation system for high-rise structures in earthquake-prone regions.Pile foundations have experienced failures in past earthquakes due to liquefaction.Research on pile foundations in liquefiable soils has primarily focused on the pile foundation behavior in two or three-layered soil profiles.However,in natural occurrence,it may occur in alternative layers of liquefiable and non-liquefiable soil.However,the experimental and/or numerical studies on the layered effect on pile foundations have not been widely addressed in the literature.Most of the design codes across the world do not explicitly mention the effect of sandwiched non-liquefiable soil layers on the pile response.In the present study,the behavior of an end-bearing pile in layered liquefiable and non-liquefiable soil deposit is studied numerically.This study found that the kinematic bending moment is higher and governs the design when the effect of the sandwiched non-liquefied layer is considered in the analysis as opposed to when its effect is ignored.Therefore,ignoring the effect of the sandwiched non-liquefied layer in a liquefiable soil deposit might be a nonconservative design approach. 展开更多
关键词 pile foundation LIQUEFACTION alternately layered soil fixity effect layered effect
下载PDF
Thermal performance of cast-in-place piles with artificial ground freezing in permafrost regions
15
作者 WANG Xinbin CHEN Kun +3 位作者 YU Qihao GUO Lei YOU Yanhui JIN Mingyang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1307-1328,共22页
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap... During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost. 展开更多
关键词 Permafrost engineering Cast-in-place pile Artificial ground freezing Thermal performance.
原文传递
Centrifuge modeling of unreinforced and multi-row stabilizing piles reinforced landslides subjected to reservoir water level fluctuation
16
作者 Chenyang Zhang Yueping Yin +3 位作者 Hui Yan Sainan Zhu Ming Zhang Luqi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1600-1614,共15页
With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides... With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks. 展开更多
关键词 Reservoir landslide Failure mechanism Multi-row stabilizing piles Mechanical behavior
下载PDF
Determination of the Pile Drivability Using Random Forest Optimized by Particle Swarm Optimization and Bayesian Optimizer
17
作者 Shengdong Cheng Juncheng Gao Hongning Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期871-892,共22页
Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical appl... Driven piles are used in many geological environments as a practical and convenient structural component.Hence,the determination of the drivability of piles is actually of great importance in complex geotechnical applications.Conventional methods of predicting pile drivability often rely on simplified physicalmodels or empirical formulas,whichmay lack accuracy or applicability in complex geological conditions.Therefore,this study presents a practical machine learning approach,namely a Random Forest(RF)optimized by Bayesian Optimization(BO)and Particle Swarm Optimization(PSO),which not only enhances prediction accuracy but also better adapts to varying geological environments to predict the drivability parameters of piles(i.e.,maximumcompressive stress,maximum tensile stress,and blow per foot).In addition,support vector regression,extreme gradient boosting,k nearest neighbor,and decision tree are also used and applied for comparison purposes.In order to train and test these models,among the 4072 datasets collected with 17model inputs,3258 datasets were randomly selected for training,and the remaining 814 datasets were used for model testing.Lastly,the results of these models were compared and evaluated using two performance indices,i.e.,the root mean square error(RMSE)and the coefficient of determination(R2).The results indicate that the optimized RF model achieved lower RMSE than other prediction models in predicting the three parameters,specifically 0.044,0.438,and 0.146;and higher R^(2) values than other implemented techniques,specifically 0.966,0.884,and 0.977.In addition,the sensitivity and uncertainty of the optimized RF model were analyzed using Sobol sensitivity analysis and Monte Carlo(MC)simulation.It can be concluded that the optimized RF model could be used to predict the performance of the pile,and it may provide a useful reference for solving some problems under similar engineering conditions. 展开更多
关键词 Random forest regression model pile drivability Bayesian optimization particle swarm optimization
下载PDF
Effects of cement-enhanced soil on the ultimate lateral resistance of composite pile in clayey soil
18
作者 Zhijun Yang Kexin Chen +1 位作者 Xudong Fu Zhiyan Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期183-191,共9页
The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral re... The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results. 展开更多
关键词 Composite pile Ultimate soil resistance Finite element limit analysis(FELA) Plasticity theory Failure mode
下载PDF
Aero-Hydro-Elastic-Servo Modeling and Dynamic Response Analysis of A Monopile Offshore Wind Turbine Under Different Operating Scenarios
19
作者 XIE Shuang-yi GAO Jian +3 位作者 LI Yong-ran JIANG Shu-xin ZHANG Cheng-lin HE Jiao 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期379-393,共15页
This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,... This paper constructs a coupled aero-hydro-elastic-servo simulation framework for a monopile offshore wind turbine(OWT).In this framework,a detailed multi-body dynamics model of the monopile OWT including the gearbox,blades,tower and other components(nacelle,hub,bedplate,etc.)has been explicitly established.The effects of pile−soil interaction,controller and operational conditions on the turbine dynamic responses are studied systematically in time domain and frequency domain.The results show that(1)a comprehensive drivetrain model has the capability to provide a more precise representation of the complex dynamic characteristics exhibited by drivetrain components,which can be used as the basis for further study on the dynamic characteristics of the drivetrain.(2)The pile−soil interaction can influence the wind turbine dynamic responses,particularly under the parked condition.(3)The effect of the pile−soil interaction on tower responses is more significant than that on blade responses.(4)The use of the controller can substantially affect the rotor characteristics,which in turn influences the turbine dynamic responses.(5)The tower and blade displacements under the operational condition are much larger than those under the parked condition.The model and methodology presented in this study demonstrate potential for examining complex dynamic behaviors of the monopile OWTs.To ensure accuracy and precision,it is imperative to construct a detailed model of the wind turbine system,while also taking into account simulation efficiency. 展开更多
关键词 offshore wind turbine(OWT) pile−soil interaction dynamic response parked condition operating condition
下载PDF
Longitudinal vibration characteristics of a tapered pipe pile considering the vertical support of surrounding soil and construction disturbance
20
作者 Li Zhenya Pan Yunchao +2 位作者 He Xianbin Lv Chong Mohammad Towhid 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期51-63,共13页
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f... This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile. 展开更多
关键词 tapered pipe pile longitudinal vibration vertical support of the surrounding soil construction disturbance displacement impedance
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部