A dynamic first-order polarization mode dispersion (PMD) compensator based on garnet and yttrium vanadate crystal has been proposed and implemented. Consisting of a differential group delay (DGD) generator and a F...A dynamic first-order polarization mode dispersion (PMD) compensator based on garnet and yttrium vanadate crystal has been proposed and implemented. Consisting of a differential group delay (DGD) generator and a Faraday rotator (FR), this PMD compensator has only two degrees of freedom. Feedback control and compensation algorithm are both very simple. Experimental results reveal the compensator behaviors to be excellent for PMD compensation in 40-Gb/s optical time domain multiplexing (OTDM) system.展开更多
By introducing a two-stage polarization mode dispersion (PMD) compensator after a optical fiber link with a large PMD,over 270 ps first-order and 2 000 ps^2 high-order PMD was compensated.The results show that the two...By introducing a two-stage polarization mode dispersion (PMD) compensator after a optical fiber link with a large PMD,over 270 ps first-order and 2 000 ps^2 high-order PMD was compensated.The results show that the two-stage compensator can be used to PMD compensation in the 20 Gb/s optical time division multiplexing system with 60 km high PMD fiber.After compensating,the 270 ps DGD is changed into max.7 ps.Moreover,the tunable FBG has a function of dispersion compensation.展开更多
We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ...We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ps. The quasi-real-time, less than one second, PMD compensation is realized. In the experiment, for the first time, the algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.展开更多
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of ...An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.展开更多
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of ...An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.展开更多
We compared efficiencies of different PMD compensation feedback methods against transmission signal bandwidth, including NRZ, RZ, CRZ format under various duty cycles. We found that the critical factor determining the...We compared efficiencies of different PMD compensation feedback methods against transmission signal bandwidth, including NRZ, RZ, CRZ format under various duty cycles. We found that the critical factor determining the efficiency of PMD compensation is not the modulation format, but the spectral bandwidth of the transmission signal.展开更多
Polarization mode dispersion (PMD) compensation is presented on environmental perturbed fiber-optical transmission system in this paper. We achieve a dynamic polarization controller (DPC) to feedback control the PMD, ...Polarization mode dispersion (PMD) compensation is presented on environmental perturbed fiber-optical transmission system in this paper. We achieve a dynamic polarization controller (DPC) to feedback control the PMD, successfully.展开更多
In this paper, by introducing a two-stages polarization mode dispersion (PMD) compensator after a optical fiber link with a large PMD, we compensated over 270ps first-order and 2000ps2 high-order PMD in a optical fibe...In this paper, by introducing a two-stages polarization mode dispersion (PMD) compensator after a optical fiber link with a large PMD, we compensated over 270ps first-order and 2000ps2 high-order PMD in a optical fiber link with super high PMD. Our experimental results shows that, the compensators based on the two-stages of compensator can be used to PMD compensation in a 20Gb/s OTDM system with 60 km high PMD fiber. Before compensation, 270ps DGD is became into max. 7ps after compensation. At simultane...展开更多
Three group velocity dispersion (GVD) compensation schemes, i.e., the post-compensation, pre-compensation and hybrid-compensation schemes, are discussed with considering polarization mode dispersion (PMD). In the 10- ...Three group velocity dispersion (GVD) compensation schemes, i.e., the post-compensation, pre-compensation and hybrid-compensation schemes, are discussed with considering polarization mode dispersion (PMD). In the 10- and 40-Gbit/s non-return-zero (NRZ) on-off-key (OOK) systems, three physical factors, Kerr effect, GVD and PMD are considered. The numerical results show that, when the impact of PMD is taken into account, the GVD pre-compensation scheme performs best with more than 1 dB better of average eye-opening penalty (EOP) when input power is up to 10 dBm in the 10-Gbit/s system. However the GVD post-compensation scheme performs best for the case of 40 Gbit/s with input power less than 13 dBm, and GVD pre-compensation will be better if the input power increased beyond this range. The results are different from those already reported under the assumption that the impact of PMD is neglected. Therefore, the research in this paper provide a different insight into the system optimization when PMD, Kerr effect and GVD are considered.展开更多
基金This work was supported by the National "863" Project of China (No. 2003AA10316X)the Specialized Resear Fund for the Doctoral Program of Higher Education (SRFDP) (No.20050003010).
文摘A dynamic first-order polarization mode dispersion (PMD) compensator based on garnet and yttrium vanadate crystal has been proposed and implemented. Consisting of a differential group delay (DGD) generator and a Faraday rotator (FR), this PMD compensator has only two degrees of freedom. Feedback control and compensation algorithm are both very simple. Experimental results reveal the compensator behaviors to be excellent for PMD compensation in 40-Gb/s optical time domain multiplexing (OTDM) system.
文摘By introducing a two-stage polarization mode dispersion (PMD) compensator after a optical fiber link with a large PMD,over 270 ps first-order and 2 000 ps^2 high-order PMD was compensated.The results show that the two-stage compensator can be used to PMD compensation in the 20 Gb/s optical time division multiplexing system with 60 km high PMD fiber.After compensating,the 270 ps DGD is changed into max.7 ps.Moreover,the tunable FBG has a function of dispersion compensation.
基金This work was supported by the National "863"High Technology Prohect of China(No.2001aa122041),and the National Natural Science Foundation of China(No.60072042).
文摘We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ps. The quasi-real-time, less than one second, PMD compensation is realized. In the experiment, for the first time, the algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.
基金This work was supported by the National "863" High Technology Project (No. 2001AA122041) and the National Natural Science Foundation of China (No. 60072042 and 60377026).
文摘An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.
文摘An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.
文摘We compared efficiencies of different PMD compensation feedback methods against transmission signal bandwidth, including NRZ, RZ, CRZ format under various duty cycles. We found that the critical factor determining the efficiency of PMD compensation is not the modulation format, but the spectral bandwidth of the transmission signal.
文摘Polarization mode dispersion (PMD) compensation is presented on environmental perturbed fiber-optical transmission system in this paper. We achieve a dynamic polarization controller (DPC) to feedback control the PMD, successfully.
基金Supported by National Science Foundations of ChinaNational 863 High Technology Projects of China.
文摘In this paper, by introducing a two-stages polarization mode dispersion (PMD) compensator after a optical fiber link with a large PMD, we compensated over 270ps first-order and 2000ps2 high-order PMD in a optical fiber link with super high PMD. Our experimental results shows that, the compensators based on the two-stages of compensator can be used to PMD compensation in a 20Gb/s OTDM system with 60 km high PMD fiber. Before compensation, 270ps DGD is became into max. 7ps after compensation. At simultane...
基金This work was supported by National High Technology Development Program of China (No. 2001AA122012 and No. 2001AA120205). A. Yang's e-mail address is qiaoyay@water.pku.edu.cn.
文摘Three group velocity dispersion (GVD) compensation schemes, i.e., the post-compensation, pre-compensation and hybrid-compensation schemes, are discussed with considering polarization mode dispersion (PMD). In the 10- and 40-Gbit/s non-return-zero (NRZ) on-off-key (OOK) systems, three physical factors, Kerr effect, GVD and PMD are considered. The numerical results show that, when the impact of PMD is taken into account, the GVD pre-compensation scheme performs best with more than 1 dB better of average eye-opening penalty (EOP) when input power is up to 10 dBm in the 10-Gbit/s system. However the GVD post-compensation scheme performs best for the case of 40 Gbit/s with input power less than 13 dBm, and GVD pre-compensation will be better if the input power increased beyond this range. The results are different from those already reported under the assumption that the impact of PMD is neglected. Therefore, the research in this paper provide a different insight into the system optimization when PMD, Kerr effect and GVD are considered.