An asymmetry power clock,4 phase power clock supplying the power to the DSCRL(dual swing charge recovery logic) adiabatic circuit is presented.It is much simpler than the 6 phase power clock,symmetry power clock,us...An asymmetry power clock,4 phase power clock supplying the power to the DSCRL(dual swing charge recovery logic) adiabatic circuit is presented.It is much simpler than the 6 phase power clock,symmetry power clock,used in the DSCRL adiabatic circuit.Although the 4 phase power clock is simpler,the DSCRL adiabatic circuit still shows good performance and high efficiency of energy transfer and recovery.This conclusion has been proved by the result of the HSPICE simulation using the 0 6μm CMOS technology.展开更多
We calculated a self-thinning exponent of 1.05 for tree mass using the 3/2 power equation in 93 Cunninghamia lanceolata plots.According to Weller’s allometric model,the self-thinning exponent for tree mass was calcul...We calculated a self-thinning exponent of 1.05 for tree mass using the 3/2 power equation in 93 Cunninghamia lanceolata plots.According to Weller’s allometric model,the self-thinning exponent for tree mass was calculated as 1.28 from the allometric exponents h and d.The both self-thinning exponents were significantly lower than 3/2.The self-thinning exponent of organs was estimated to be 1.42 for stems,0.93 for branches,0.96 for leaves,1.35 for roots and 1.28 for shoots,respectively.The self-thinning exponent of stem mass was not significantly different from 3/2,whereas thinning exponents of trees,branches,leaves and roots were significantly lower than 3/2.The stand leaf mass and stand branch mass were constant regardless of the stand density.The scaling relations among branch,leaf,stem,root and shoot mass(MB,ML,MS,MR and MA,respectively) showed that MB and ML scaled as the3/4 power of MS,whereas MS or MA scaled isometrically with respect to MR.展开更多
Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral s...Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.展开更多
文摘An asymmetry power clock,4 phase power clock supplying the power to the DSCRL(dual swing charge recovery logic) adiabatic circuit is presented.It is much simpler than the 6 phase power clock,symmetry power clock,used in the DSCRL adiabatic circuit.Although the 4 phase power clock is simpler,the DSCRL adiabatic circuit still shows good performance and high efficiency of energy transfer and recovery.This conclusion has been proved by the result of the HSPICE simulation using the 0 6μm CMOS technology.
基金supported by Foundation of Guangdong Forestry Bureau (Nos.4400-F11031,4400-F11055)
文摘We calculated a self-thinning exponent of 1.05 for tree mass using the 3/2 power equation in 93 Cunninghamia lanceolata plots.According to Weller’s allometric model,the self-thinning exponent for tree mass was calculated as 1.28 from the allometric exponents h and d.The both self-thinning exponents were significantly lower than 3/2.The self-thinning exponent of organs was estimated to be 1.42 for stems,0.93 for branches,0.96 for leaves,1.35 for roots and 1.28 for shoots,respectively.The self-thinning exponent of stem mass was not significantly different from 3/2,whereas thinning exponents of trees,branches,leaves and roots were significantly lower than 3/2.The stand leaf mass and stand branch mass were constant regardless of the stand density.The scaling relations among branch,leaf,stem,root and shoot mass(MB,ML,MS,MR and MA,respectively) showed that MB and ML scaled as the3/4 power of MS,whereas MS or MA scaled isometrically with respect to MR.
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 40406008)the Foundation for 0pen Projects of the Key Lab of Physical 0ceanography, the Ministry of Education, China (Grant No. 200309).
文摘Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.