Background and Aims: Pulse pressure variation (PPV) is a reliable and predictive dynamic parameter presently being utilized for fluid responsiveness. In the operating room, fluid administration based on PPV monitoring...Background and Aims: Pulse pressure variation (PPV) is a reliable and predictive dynamic parameter presently being utilized for fluid responsiveness. In the operating room, fluid administration based on PPV monitoring helps the physician in deciding whether to volume resuscitate or use interventions in patients undergoing surgery. Propofol is an intravenous induction agent which lowers blood pressure. There are multiple causes such as depression in cardiac output, and peripheral vasodilatation for hypotension. We undertook this study to observe the utility of PPV as a guide to fluid therapy after propofol induction. Primary outcome of our study was to monitor PPV as a marker of fluid responsiveness for the hypotension caused by propofol induction. Secondary outcome included the correlation of PPV with other hemodynamic parameters like heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP);after induction with propofol at regular interval of time. Methods: A total number of 90 patients were recruited. Either of the radial artery was then cannulated under local anaesthesia with 20G VygonLeadercath arterial cannula and invasive monitoring transduced. A baseline recording of heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and PPV was then recorded. Patients were then induced with predetermined doses of propofol (2 mg/kg) and recordings of HR, SBP, DBP, and PPV were taken at 5, 10 and 15 minutes. Results: Intraoperatively, PPV was significantly higher at 5 minutes and significantly lower at 15 minutes after induction. It was observed that there were no statistically significant correlations between PPV and SBP or DBP. PPV was strongly and directly associated with HR. Conclusion: We were able to establish that PPV predicts fluid responsiveness in hypotension caused by propofol induction;and can be used to administer fluid therapy in managing such hypotension. However, PPV was not directly correlated with hypotension subsequent to propofol administration.展开更多
Recently,Garai et al.(2022)published a paper on the impact of orientation of blast initiation on ground vibrations.However,some of the claims are not supported by the results of the given tests.In Fig.1(see Fig.8 in G...Recently,Garai et al.(2022)published a paper on the impact of orientation of blast initiation on ground vibrations.However,some of the claims are not supported by the results of the given tests.In Fig.1(see Fig.8 in Garai et al.,2022),there are contours of measured vibration velocities in 4 directions(every 90?)and an incorrect interpretation between them.By placing all measured vibration velocity values(Gerai et al.,2022)at well-defined points on a single figure,it was not possible to precisely determine the type of vibration velocity,such as radial,tangential and vertical vibration velocities,with their different shapes.An incorrect conclusion was also drawn about the direction of the highest vibration velocity.The paper by Garai et al.(2022)measured the vibrational velocity of the medium through which the seismic wave passed,but used the incorrect term shock wave.The shock wave would have destroyed the seismic measuring instruments.A superposition of the vibrational velocity was considered,but not combined with the vibrational frequency of the seismic wave.This paper presents a method for selecting the time delay between successively initiated explosive charges to the measured frequency of the seismic wave,so that the direction of initiation of the explosive charges does not affect the vibration velocity of the ground through which the seismic wave passes.The theoretical and measured shapes and waveforms of radial velocity and tangential velocity in an opencast lignite mine are then presented.Moreover,the conditions for the formation of shock wave,transition wave and seismic waves are presented.展开更多
The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and...The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and resultant peak particle velocity(PPV)generates.With the orientation sequence of holes blasts on site,the superimposition angle of wave changes and hence results in significant variation in resultant PPV.The orientation with respect to the initiation of blasts resulting in lowest PPV needs to be identified for any site.By knowing the PPV contour of vibration waves in mine sites,it is possible to reduce the vibration on the structures by changing the initiation sequence.In this paper,experimental blasts were conducted at two different mine sites and the PPV values were recorded at different ori-entations from the blast site and its initiation sequence.The PPV contours were drawn to identify the orientation with least and highest PPV generation line.It was found that by merely changing the initi-ation sequence of blasts with respect to the sensitive structure or point of interest,the PPV values can be reduced significantly up to 76.9%.展开更多
Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by usin...Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by using the drill and blast tunneling(D&B).However,the dynamic response and failure mechanism of surrounding rocks of the existing tunnel caused by adjacent transient excavation are not clear due to the difficulty in conducting field tests and laboratory experiments.Therefore,a novel transient unloading experimental system for deep tunnel excavation was proposed in this study.The real stress path and the unloading rate can be reproduced by using this proposed system.The experiments were conducted for observing the dynamic response of the existing tunnel induced by adjacent transient excavation under different lateral pressure coefficients l(?0.4,0.6,0.8,1,1.2,1.4,1.6,1.8)with a polymethyl methacrylate(PMMA)specimen.The propagation of the impact wave and unloading surface wave was detected through the digital image correlation(DIC)analysis.The reflection of the unloading surface wave on the incident side of the existing tunnel(tunnel-E)was observed and analyzed.Moreover,the dynamic characteristics of the stress redistribution,the particle displacement and vibration velocity of surrounding rocks of tunnel-E were analyzed and summarized.In addition,the Mohr-Coulomb(MeC)failure criterion with tension cut-off was adopted to evaluate the stability of the existing tunnel under adjacent transient excavation.The results indicate that the incident side of the existing tunnel under the dynamic disturbance of transient excavation of an adjacent tunnel was more prone to fail,followed by the shadow side and the top/bottom side.展开更多
文摘Background and Aims: Pulse pressure variation (PPV) is a reliable and predictive dynamic parameter presently being utilized for fluid responsiveness. In the operating room, fluid administration based on PPV monitoring helps the physician in deciding whether to volume resuscitate or use interventions in patients undergoing surgery. Propofol is an intravenous induction agent which lowers blood pressure. There are multiple causes such as depression in cardiac output, and peripheral vasodilatation for hypotension. We undertook this study to observe the utility of PPV as a guide to fluid therapy after propofol induction. Primary outcome of our study was to monitor PPV as a marker of fluid responsiveness for the hypotension caused by propofol induction. Secondary outcome included the correlation of PPV with other hemodynamic parameters like heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP);after induction with propofol at regular interval of time. Methods: A total number of 90 patients were recruited. Either of the radial artery was then cannulated under local anaesthesia with 20G VygonLeadercath arterial cannula and invasive monitoring transduced. A baseline recording of heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and PPV was then recorded. Patients were then induced with predetermined doses of propofol (2 mg/kg) and recordings of HR, SBP, DBP, and PPV were taken at 5, 10 and 15 minutes. Results: Intraoperatively, PPV was significantly higher at 5 minutes and significantly lower at 15 minutes after induction. It was observed that there were no statistically significant correlations between PPV and SBP or DBP. PPV was strongly and directly associated with HR. Conclusion: We were able to establish that PPV predicts fluid responsiveness in hypotension caused by propofol induction;and can be used to administer fluid therapy in managing such hypotension. However, PPV was not directly correlated with hypotension subsequent to propofol administration.
文摘Recently,Garai et al.(2022)published a paper on the impact of orientation of blast initiation on ground vibrations.However,some of the claims are not supported by the results of the given tests.In Fig.1(see Fig.8 in Garai et al.,2022),there are contours of measured vibration velocities in 4 directions(every 90?)and an incorrect interpretation between them.By placing all measured vibration velocity values(Gerai et al.,2022)at well-defined points on a single figure,it was not possible to precisely determine the type of vibration velocity,such as radial,tangential and vertical vibration velocities,with their different shapes.An incorrect conclusion was also drawn about the direction of the highest vibration velocity.The paper by Garai et al.(2022)measured the vibrational velocity of the medium through which the seismic wave passed,but used the incorrect term shock wave.The shock wave would have destroyed the seismic measuring instruments.A superposition of the vibrational velocity was considered,but not combined with the vibrational frequency of the seismic wave.This paper presents a method for selecting the time delay between successively initiated explosive charges to the measured frequency of the seismic wave,so that the direction of initiation of the explosive charges does not affect the vibration velocity of the ground through which the seismic wave passes.The theoretical and measured shapes and waveforms of radial velocity and tangential velocity in an opencast lignite mine are then presented.Moreover,the conditions for the formation of shock wave,transition wave and seismic waves are presented.
文摘The blast-induced ground vibrations can be significantly controlled by varying the location and orien-tation of point of interest from blast site.The blast waves generated due to individual holes get super-imposed and resultant peak particle velocity(PPV)generates.With the orientation sequence of holes blasts on site,the superimposition angle of wave changes and hence results in significant variation in resultant PPV.The orientation with respect to the initiation of blasts resulting in lowest PPV needs to be identified for any site.By knowing the PPV contour of vibration waves in mine sites,it is possible to reduce the vibration on the structures by changing the initiation sequence.In this paper,experimental blasts were conducted at two different mine sites and the PPV values were recorded at different ori-entations from the blast site and its initiation sequence.The PPV contours were drawn to identify the orientation with least and highest PPV generation line.It was found that by merely changing the initi-ation sequence of blasts with respect to the sensitive structure or point of interest,the PPV values can be reduced significantly up to 76.9%.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141010,51879184 and 12172253).
文摘Engineering disasters(e.g.rock slabbing and rockburst)of the tunnel groups induced by the transient excavation of an adjacent tunnel threaten the stability of the existing tunnel,especially for those excavated by using the drill and blast tunneling(D&B).However,the dynamic response and failure mechanism of surrounding rocks of the existing tunnel caused by adjacent transient excavation are not clear due to the difficulty in conducting field tests and laboratory experiments.Therefore,a novel transient unloading experimental system for deep tunnel excavation was proposed in this study.The real stress path and the unloading rate can be reproduced by using this proposed system.The experiments were conducted for observing the dynamic response of the existing tunnel induced by adjacent transient excavation under different lateral pressure coefficients l(?0.4,0.6,0.8,1,1.2,1.4,1.6,1.8)with a polymethyl methacrylate(PMMA)specimen.The propagation of the impact wave and unloading surface wave was detected through the digital image correlation(DIC)analysis.The reflection of the unloading surface wave on the incident side of the existing tunnel(tunnel-E)was observed and analyzed.Moreover,the dynamic characteristics of the stress redistribution,the particle displacement and vibration velocity of surrounding rocks of tunnel-E were analyzed and summarized.In addition,the Mohr-Coulomb(MeC)failure criterion with tension cut-off was adopted to evaluate the stability of the existing tunnel under adjacent transient excavation.The results indicate that the incident side of the existing tunnel under the dynamic disturbance of transient excavation of an adjacent tunnel was more prone to fail,followed by the shadow side and the top/bottom side.