期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Diffusionless-Like Transformation Unlocks Pseudocapacitance with Bulk Utilization: Reinventing Fe_(2)O_(3) in Alkaline Electrolyte 被引量:1
1
作者 Taowen Dong Wencai Yi +10 位作者 Ting Deng Tingting Qin Xianyu Chu He Yang Lirong Zheng Seung Jo Yoo Jin-Gyu Kim Zizhun Wang Yan Wang Wei Zhang Weitao Zheng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期145-154,共10页
Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to eith... Energy density can be substantially raised and even maximized if the bulk of an electrode material is fully utilized.Transition metal oxides based on conversion reaction mechanism are the imperative choice due to either constructing nanostructure or intercalation pseudocapacitance with their intrinsic limitations.However,the fully bulk utilization of transition metal oxides is hindered by the poor understanding of atomic-level conversion reaction mechanism,particularly it is largely missing at clarifying how the phase transformation(conversion reaction)determines the electrochemical performance such as power density and cyclic stability.Herein,α-Fe_(2)O_(3) is a case provided to claim how the diffusional and diffusionless transformation determine the electrochemical behaviors,as of its conversion reaction mechanism with fully bulk utilization in alkaline electrolyte.Specifically,the discharge productα-FeOOH diffusional from Fe(OH)2 is structurally identified as the atomic-level arch criminal for its cyclic stability deterioration,whereas the counterpartδ-FeOOH is theoretically diffusionless-like,unlocking the full potential of the pseudocapacitance with fully bulk utilization.Thus,such pseudocapacitance,in proof-of-concept and termed as conversion pseudocapacitance,is achieved via diffusionless-like transformation.This work not only provides an atomic-level perspective to reassess the potential electrochemical performance of the transition metal oxides electrode materials based on conversion reaction mechanism but also debuts a new paradigm for pseudocapacitance. 展开更多
关键词 bulk utilization conversion pseudocapacitance diffusionless transformation Fe_(2)O_(3) phase transformation
下载PDF
Understanding Pseudocapacitance Mechanisms by Synchrotron X-ray Analytical Techniques 被引量:1
2
作者 Pei Tang Wuyang Tan +7 位作者 Guangyang Deng Yunting Zhang Shan Xu Qijun Wang Guosheng Li Jian Zhu Qingyun Dou Xingbin Yan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期312-331,共20页
Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure... Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed. 展开更多
关键词 in situ experiments pseudocapacitive materials structure-property relationship synchrotron X-ray analytical techniques
下载PDF
High‑Energy and High‑Power Pseudocapacitor–Battery Hybrid Sodium‑Ion Capacitor with Na^(+) Intercalation Pseudocapacitance Anode 被引量:4
3
作者 Qiulong Wei Qidong Li +5 位作者 Yalong Jiang Yunlong Zhao Shuangshuang Tan Jun Dong Liqiang Mai Dong‑Liang Peng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期209-221,共13页
High-performance and low-cost sodium-ion capacitors(SICs)show tremendous potential applications in public transport and grid energy storage.However,conventional SICs are limited by the low specific capacity,poor rate ... High-performance and low-cost sodium-ion capacitors(SICs)show tremendous potential applications in public transport and grid energy storage.However,conventional SICs are limited by the low specific capacity,poor rate capability,and low initial coulombic efficiency(ICE)of anode materials.Herein,we report layered iron vanadate(Fe5V15O39(OH)9·9H2O)ultrathin nanosheets with a thickness of~2.2 nm(FeVO UNSs)as a novel anode for rapid and reversible sodium-ion storage.According to in situ synchrotron X-ray diffractions and electrochemical analysis,the storage mechanism of FeVO UNSs anode is Na+intercalation pseudocapacitance under a safe potential window.The FeVO UNSs anode delivers high ICE(93.86%),high reversible capacity(292 mAh g^−1),excellent cycling stability,and remarkable rate capability.Furthermore,a pseudocapacitor–battery hybrid SIC(PBH-SIC)consisting of pseudocapacitor-type FeVO UNSs anode and battery-type Na3(VO)2(PO4)2F cathode is assembled with the elimination of presodiation treatments.The PBH-SIC involves faradaic reaction on both cathode and anode materials,delivering a high energy density of 126 Wh kg^−1 at 91 W kg^−1,a high power density of 7.6 kW kg^−1 with an energy density of 43 Wh kg−1,and 9000 stable cycles.The tunable vanadate materials with high-performance Na+intercalation pseudocapacitance provide a direction for developing next-generation highenergy capacitors. 展开更多
关键词 Sodium-ion capacitors pseudocapacitance Hybrid capacitors Two-dimensional materials Iron vanadate
下载PDF
Cation-vacancy induced Li+ intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries 被引量:2
4
作者 Ding Yuan David Adekoya +9 位作者 Yuhai Dou Yuhui Tian Hao Chen Zhenzhen Wu Jiadong Qin Linping Yu Jian Zhang Xianhu Liu Shi Xue Dou Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期281-288,I0006,共9页
It is challenging to create cation vacancies in electrode materials for enhancing the performance of rechargeable lithium ion batteries (LIBs). Herein, we utilized a strong alkaline etching method to successfully crea... It is challenging to create cation vacancies in electrode materials for enhancing the performance of rechargeable lithium ion batteries (LIBs). Herein, we utilized a strong alkaline etching method to successfully create Co vacancies at the interface of atomically thin Co_(3−x)O_(4)/graphene@CNT heterostructure for high-energy/power lithium storage. The creation of Co-vacancies in the sample was confirmed by high-resolution scanning transmission electron microscope (HRSTEM), X-ray photoelectron spectroscopy (XPS) and electron energy loss near-edge structures (ELNES). The obtained Co_(3−x)O_(4)/graphene@CNT delivers an ultra-high capacity of 1688.2 mAh g^(−1) at 0.2 C, excellent rate capability of 83.7% capacity retention at 1 C, and an ultralong life up to 1500 cycles with a reversible capacity of 1066.3 mAh g^(−1). Reaction kinetic study suggests a significant contribution from pseudocapacitive storage induced by the Co-vacancies at the Co_(3−x)O_(4)/graphene@CNT interface. Density functional theory confirms that the Co-vacancies could dramatically enhance the Li adsorption and provide an additional pathway with a lower energy barrier for Li diffusion, which results in an intercalation pseudocapacitive behavior and high-capacity/rate energy storage. 展开更多
关键词 Cation vacancy Atomically thin Interface pseudocapacitance Lithium-ion batteries
下载PDF
The pseudocapacitance mechanism of graphene/CoAl LDH and its derivatives:Are all the modifications beneficial? 被引量:2
5
作者 Chuan Jing Xu Dong Liu +4 位作者 Kailin Li Xiaoying Liu Biqin Dong Fan Dong Yuxin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期218-227,I0007,共11页
Cobalt-Aluminum layered double hydroxide(CoAl LDH) is a hopeful electrode material due to the advantage of easy modifiability for preparing LDH-based derivatives.However,there is short of modification methods to prepa... Cobalt-Aluminum layered double hydroxide(CoAl LDH) is a hopeful electrode material due to the advantage of easy modifiability for preparing LDH-based derivatives.However,there is short of modification methods to prepare the Co-based derivatives from CoAl LDH and also short of an intuitive perspective to analyze the pseudocapacitance mechanism of CoAl LDH and its derivatives.Herein,Graphene/CoAl LDH and its derivatives including Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP were prepared by reasonably using alkali etching treatment,sulfofication and phosphorization.The specific capacitance of Graphene/CoAl LDH,Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP at1 A g^(-1) are 260.7,371.3,440.8,61.4 and 122.2 F g^(-1),especially.The pseudocapacitance mechanism of Graphene/CoAl LDH and its derivatives was analyzed.Due to the positive effect of sulfofication on the electrical conductivity of GO and cobalt sulfide,the Graphene/CoS and Graphene/CoS-1 exhibit the optimal electrochemical performance and superior rate capability.In addition,due to the repulsion effect between Graphene and OH-,the Graphene/CoAl LDH exhibits optimal cycling stability of 224.1% capacitance retention after 20000 cycles.Besides,the reason of terrible specific capacitance of Graphene/CoOOH is that the presence of H bond in interlayer of CoOOH inhibits the interaction between Co3+ and OHspecies.Hence,not all modifications will increase the specific capacitance of the electrode materials.Overall,this work provides us with a detailed analysis of the electrochemical mechanism and correlation of CoAl LDH and its derivatives from the perspective of crystal structure and composition. 展开更多
关键词 CoAl LDH and its derivates Modification pseudocapacitance mechanism Alkali etching treatment Sulfofication Phosphorization
下载PDF
Surface pseudocapacitance of mesoporous Mo_(3)N_(2) nanowire anode toward reversible high-rate sodium-ion storage 被引量:2
6
作者 Yalong Jiang Jun Dong +8 位作者 Shuangshuang Tan Qiulong Wei Fangyu Xiong Wei Yang Yuanhao Shen Qingxun Zhang Zi'ang Liu Qinyou An Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期295-303,共9页
Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials ... Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials for sodium-ion storage,while their detailed reaction mechanism remains unexplored.Herein,we synthesize the mesoporous Mo3N2 nanowires(Meso-Mo_(3)N_(2)-NWs).The sodium-ion storage mechanism of Mo3N2 is systematically investigated through in-situ XRD,ex-situ experimental characterizations and detailed kinetics analysis.Briefly,the Mo_(3)N_(2) undergoes a surface pseudocapacitive redox charge storage process.Benefiting from the rapid surface redox reaction,the Meso-Mo_(3)N_(2)-NWs anode delivers high specific capacity(282 m Ah g^(-1) at 0.1 A g^(-1)),excellent rate capability(87 m Ah g^(-1) at 16 A g^(-1))and long cycling stability(a capacity retention of 78.6%after 800 cycles at 1 A g^(-1)).The present work highlights that the surface pseudocapacitive sodium-ion storage mechanism enables to overcome the sluggish sodium-ion diffusion process,which opens a new direction to design and synthesize high-rate sodiumion storage materials. 展开更多
关键词 Surface pseudocapacitance Sodium-ion storage Nitrogen vacancy Molybdenum nitride High-rate
下载PDF
High-energy sodium-ion hybrid capacitors through nanograin-boundary-induced pseudocapacitance of Co_(3)O_(4) nanorods 被引量:1
7
作者 Wenliang Feng Venkata Sai Avvaru +1 位作者 Steven JHinder Vinodkumar Etacheri 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期338-346,I0009,共10页
Sodium-ion hybrid capacitors (SICs) have been proposed to bridge performance gaps between batteries and supercapacitors,and thus realize both high energy density and power density in a single configuration.Nevertheles... Sodium-ion hybrid capacitors (SICs) have been proposed to bridge performance gaps between batteries and supercapacitors,and thus realize both high energy density and power density in a single configuration.Nevertheless,applications of SICs are severely restricted by their insufficient energy densities (<100Wh/kg) resulted from the kinetics imbalance between cathodes and anodes.Herein,we report a nanograin-boundary-rich hierarchical Co_(3)O_(4) nanorod anode composed of~20 nm nanocrystallites.Extreme pseudocapacitance (up to 72%@1.0 mV/s) is achieved through nanograin-boundary-induced pseudocapacitive-type Na^(+) storage process.Co_(3)O_(4) nanorod anode delivers in this case highly reversible capacity (810 mAh/g@0.025 A/g),excellent rate capability (335 mAh/g@5.0 A/g),and improved cycle stability (100 cycles@1.0 A/g with negligible capacity degradation).The outstanding performance can be credited to the hierarchical morphology of Co_(3)O_(4) nanorods and the well-designed nanograinboundaries between nanocrystallites that avoid particle agglomeration,induce pseudocapacitive-type Na^(+) storage,and accommodate volume variation during sodiation-desodiation processes.Nitrogendoping of the Co_(3)O_(4) nanorods not only generates defects for extra surficial Na^(+) storage but also increases the electronic conductivity for efficient charge separation and lowers energy barrier for Na^(+) intercalation.Synergy of conventional reaction mechanism and pseudocapacitive-type Na^(+) storage enables high specific capacity,rapid Na^(+) diffusion,and improved structural stability of the Co_(3)O_(4) nanorod electrode.The SIC integrating this highly pseudocapacitive anode and activated carbon cathode delivers exceptional energy density (175 Wh/kg@40 W/kg),power density (6632 W/kg@37 Wh/kg),cycle life (6000 cycles@1.0 A/g with a capacity retention of 81%),and coulombic efficiency (~100%). 展开更多
关键词 Sodium-ion hybrid capacitor Cobalt oxide nanorod Nanograin-boundary pseudocapacitance
下载PDF
Phosphorous-doped carbon nanotube/reduced graphene oxide aerogel cathode enabled by pseudocapacitance for high energy and power zinc-ion hybrid capacitors
8
作者 Junjun Yao Fuzhi Li +3 位作者 Ruyi Zhou Chenchen Guo Xinru Liu Yirong Zhu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第2期570-576,共7页
The design and development of energy storage device with high energy/power density has become a research hotspot.Zinc-ion hybrid capacitors(ZHCs)are considered as one of the most promising candidates.However,the appli... The design and development of energy storage device with high energy/power density has become a research hotspot.Zinc-ion hybrid capacitors(ZHCs)are considered as one of the most promising candidates.However,the application of ZHCs is hindered by their low energy density at high power density due to the unsatisfactory cathode material.In this study,a novel 3D phosphorus-doped carbon nanotube/reduced graphene oxide(P-CNT/rGO)aerogel cathode is synthesized through a synergistic modification strategy of CNT insertion and P doping modification combined with 3D porous design.The as-obtained P-CNT/rGO aerogel cathode manifests significantly increased surface aera,expanded interlayer spacing,and enhanced pseudocapacitance behavior,thus leading to significantly enhanced specific capacitance and superb ions transport performance.The as-assembled ZHC based on P-CNT/rGO cathode delivers a superior energy density of 42.2 Wh/kg at an extreme-high power density of 80 kW/kg and excellent cycle life.In-depth kinetic analyses are undertaken to prove the enhanced pseudocapacitance behavior and exceptional power output capability of ZHCs.Furthermore,the reaction mechanism of physical and chemical adsorption/desorption of electrolyte ions on the P-CNT/rGO cathode is revealed by systematic ex-situ characterizations.This work can provide a valuable reference for developing advanced graphene-based cathode for high energy/power density ZHCs. 展开更多
关键词 Graphene aerogel Phosphorus doping pseudocapacitance Zinc-ion hybrid capacitors Energy storage mechanism
原文传递
High-rate sodium-ion storage of vanadium nitride via surface-redox pseudocapacitance
9
作者 Qiulong Wei Tingyi Huang +6 位作者 Xiaojuan Huang Binhao Wang Yalong Jiang Dafu Tang Dong-Liang Peng Bruce Dunn Liqiang Mai 《Interdisciplinary Materials》 2023年第3期434-442,共9页
Vanadium nitride(VN)electrode displays high-rate,pseudocapacitive responses in aqueous electrolytes,however,it remains largely unclear in nonaqueous,Na+-based electrolytes.The traditional view supposes a conversion-ty... Vanadium nitride(VN)electrode displays high-rate,pseudocapacitive responses in aqueous electrolytes,however,it remains largely unclear in nonaqueous,Na+-based electrolytes.The traditional view supposes a conversion-type mechanism for Na+storage in VN anodes but does not explain the phenomena of their size-dependent specific capacities and underlying causes of pseudocapacitive charge storage behaviors.Herein,we insightfully reveal the VN anode exhibits a surface-redox pseudocapacitive mechanism in nonaqueous,Na+-based electrolytes,as demonstrated by kinetics analysis,experimental observations,and first-principles calculations.Through ex situ X-ray photoelectron spectroscopy and semiquantitative analyses,the Na+storage is characterized by redox reactions occurring with the V5+/V4+to V3+at the surface of VN particles,which is different from the well-known conversion reaction mechanism.The pseudocapacitive performance is enhanced through nanoarchitecture design via oxidized vanadium states at the surface.The optimized VN-10 nm anode delivers a sodium-ion storage capability of 106 mAh g−1 at the high specific current of 20 A g−1,and excellent cycling performance of 5000 cycles with negligible capacity losses.This work demonstrates the emerging opportunities of utilizing pseudocapacitive charge storage for realizing high-rate sodium-ion storage applications. 展开更多
关键词 high-rate capability pseudocapacitance sodium-ion storage vanadium nitride
下载PDF
Hierarchically Structured Three-Dimensional Carbon-Based Integrated Electrodes with Enhanced Pseudocapacitance and Deformability
10
作者 Bo-Hao Xiao Wei-Jie Cai +2 位作者 Pei-Yuan Wu Kang Xiao Zhao-Qing Liu 《Renewables》 2023年第2期227-238,共12页
Compressible supercapacitors play an increasingly significant role in flexible sensors and wearable electronic devices.However,the integration of mechanical compressibility and excellent electrochemical performance in... Compressible supercapacitors play an increasingly significant role in flexible sensors and wearable electronic devices.However,the integration of mechanical compressibility and excellent electrochemical performance into a single device remains a challenge.Herein,we demonstrate a compressible and high-performance supercapacitor based on an N-doped carbon foam elastomer with hierarchical carbon nanotubes.Hierarchically structured Fe3C@N-doped carbon nanotubes/N-doped carbon foam and Ni@N-doped carbon nanotubes/N-doped carbon foam have been synthesized via a simple and universal self-catalytic strategy.The hierarchical structural features of self-catalytic N-doped carbon nanotubes serve as a cushion when the composite is subjected to an external force,exhibiting excellent mechanical properties with a maximum compressive strain of 80%and fatigue resistance of 1000 cycles.Moreover,the different electroactive potentials of the transition-metal species in the composites provide the assembly with a maximum operating voltage of 1.4 V,which shows a maximum energy density of∼10.74 Wh kg^(−1)(0.084 mWh cm^(−3))at the power density of∼179.2 W kg^(−1)(1.4 mWh cm^(−3)),and retains 88.4%of the original capacitance after 20,000 charge–discharge cycles,even at a strain of 80%.This work paves the way for controllable fabrication of compressible electrodes and supercapacitors. 展开更多
关键词 compressible supercapacitors hierarchical structure self-catalytic N-doped carbon nanotubes N-doped carbon foam pseudocapacitance
原文传递
碳化硅纳米材料及其衍生碳在超级电容器领域的应用
11
作者 刘慧敏 李克智 +3 位作者 张欣 殷学民 付前刚 李贺军 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第2期58-75,共18页
超级电容器由于充放电速度快、循环寿命长、成本低、环境友好等特性在众多储能器件中脱颖而出。在各类电极材料中,碳化硅(SiC)纳米材料及其衍生碳因其高稳定性、优异的导电性等优势被认为是极具应用前景的超级电容器电极材料。本文首先... 超级电容器由于充放电速度快、循环寿命长、成本低、环境友好等特性在众多储能器件中脱颖而出。在各类电极材料中,碳化硅(SiC)纳米材料及其衍生碳因其高稳定性、优异的导电性等优势被认为是极具应用前景的超级电容器电极材料。本文首先系统地阐述了SiC纳米材料及其衍生碳的常用制备方法;然后,详细综述了SiC纳米材料及其衍生碳在超级电容器应用中的研究进展,总结“高导电碳材料复合”、“杂原子掺杂”、“赝电容材料复合”、“多级孔结构的设计”、“化学活化”等电化学性能的提升策略;最后,对SiC纳米材料及其衍生碳在超级电容器储能领域中应用存在的挑战和机遇进行展望。 展开更多
关键词 碳化硅 碳化硅衍生碳 双电层电容 赝电容
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
12
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 In-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER Zinc-ion batteries
下载PDF
FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage
13
作者 Zhihui Li Qingmeng Gan +9 位作者 Yifan Zhang Jing Hu Peng Liu Changhong Xu Xibing Wu Yilin Ge Feng Wang Qingrong Yao Zhouguang Lu Jianqiu Deng 《Nano Research》 SCIE EI CSCD 2022年第1期217-224,共8页
Potassium-ion batteries(PIBs)are promising ne15t-generation energy storage candidates due to abundant resources and low cost.Sb-based materials with high theoretical capacity(660 mAh·g^(-1))and low working potent... Potassium-ion batteries(PIBs)are promising ne15t-generation energy storage candidates due to abundant resources and low cost.Sb-based materials with high theoretical capacity(660 mAh·g^(-1))and low working potential are considered as promising anode for PIBs.The remaining challenge is poor stability and slow kinetics.In this work,FeSb@N-doped carbon quantum dots anchored in three-dimensional(3D)porous N-doped carbon(FeSb@C/Nc3DC/N),a Sb-based material with a particular structure,is designed and constructed by a green salt-template method.As an anode for PIBs,it exhibits extraordinarily high-rate and long-cycle stability(a capacity of 245 mAh·g^(-1) at 3,080 mAh·g^(-1) after 1,000 cycles).The pseudocapacitance contribution(83%)is demonstrated as the origin of high-rate performance of the FeSb@C/NС3DC/N electrode.Furthermore,the potassium storage mechanism in the electrode is systematically investigated through ex-situ characterization techniques including ex-situ transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).Overall,this study could provide a useful guidance for future design of high-performance electrode materials for PIBs. 展开更多
关键词 potassium-ion batteries ANODE fesb alloy quantum dots high rate pseudocapacitance
原文传递
Interlayer material technology of manganese phosphate toward and beyond electrochemical pseudocapacitance over energy storage application
14
作者 Xu Bao Wei-Bin Zhang +3 位作者 Qiang Zhang Lun Zhang Xue-Jing Ma Jianping Long 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第12期109-128,共20页
Manganese phosphates have shown excellent performances and great potential in electrochemical energy storage,which are demonstrated by research works published in recent years.For manganese phosphates,the open-framewo... Manganese phosphates have shown excellent performances and great potential in electrochemical energy storage,which are demonstrated by research works published in recent years.For manganese phosphates,the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity.In this review,we present the recent progress on manganese phosphates,by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors.The structural characteristics,synthesis methods,and mineral sources to prepare these manganese phosphates are investigated,together with the modification,as they strongly affect the electrochemical energy storage performance.Attentions are paid to those hybrid-type materials,where strong synergistic effects exist.In the summary,interlayer engineering for the manganese phosphates and hybrid-types are proposed and discussed. 展开更多
关键词 Manganese phosphate Layer structure Interlayer technology pseudocapacitance SUPERCAPACITOR Energy storage
原文传递
镍铁锰酸钠层状氧化物的制备及性能研究
15
作者 王亿周 胡晓梅 +1 位作者 王永详 张维民 《无机盐工业》 CAS CSCD 北大核心 2024年第2期57-64,共8页
O3型NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)正极材料具有比容量高、高低温性能优良等特性,是一种具有实际应用价值的钠离子正极材料。通过共沉淀法制备了一系列正极材料,重点研究了pH对材料特征和性能的影响。借助扫描电子显微镜(SEM)、X射... O3型NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)正极材料具有比容量高、高低温性能优良等特性,是一种具有实际应用价值的钠离子正极材料。通过共沉淀法制备了一系列正极材料,重点研究了pH对材料特征和性能的影响。借助扫描电子显微镜(SEM)、X射线衍射仪(XRD)、恒电流间歇滴定技术(GITT)及其他电化学测试技术对NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)材料的形貌、晶格参数、循环性能、倍率性能、钠离子扩散系数及赝电容贡献率等进行分析,发现随着pH的增大,样品粒径呈减小趋势,且过高的pH会造成样品粒径锐减,最佳合成pH为11。最佳pH条件下NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)材料的电化学测试结果表明,在30℃下电流密度为0.2C时,其放电比容量为142.3mA·h/g,展现出优异的电化学性能。 展开更多
关键词 钠离子电池 共沉淀法 钠离子扩散系数 赝电容
下载PDF
High-pseudocapacitance of porous and square NiO@NC nanosheets for high-performance lithium-ion batteries 被引量:3
16
作者 Ze-Lin Cai Zi-Lin Peng +3 位作者 Meng-Qi Wang Jia-Yan Wu Hao-Sen Fan Yu-Fei Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第6期1451-1458,共8页
Layered nickel oxides have been focused with intense research interests as high-performance lithium-ion batterie(LIB)anode.However,it is hard to obtain few layered nickel oxides material directly as it easily forms bu... Layered nickel oxides have been focused with intense research interests as high-performance lithium-ion batterie(LIB)anode.However,it is hard to obtain few layered nickel oxides material directly as it easily forms bulk material with the strong interaction between the interlayer.In this work,two-dimensional(2 D)nickel-based coordination polymers were successfully prepared according to aqueous phase copolymerization approach.And then uniform carbondoped NiO nanosheets were successfully obtained from facile solution assembly and post-thermal treatment.The detailed electrochemical testing shows that the uniform NiO nanocrystals encapsulated into porous N-doped carbon(NiO@NC)nanosheets present much higher rate capability with the discharge specific capacity of 782.7 mAh·g^(-1) at high current density of 2.0 A·g^(-1) than pure NiO(690 mAh·g^(-1)).It also shows long-term cycling performance with 91%retention after 50 cycles at 1.0 A·g^(-1).The high rate capability,cycling stability and the easy synthesis make NiO@NC nanosheets as a promising candidate for LIB anode and build up new way for the fabrication of metal oxides anode materials. 展开更多
关键词 Anode Batteries SQUARE NiO@NC nanosheets PSEUDOCAPACITIVE
原文传递
Layered manganese phosphorus trisulfides for high-performance lithium-ion batteries and the storage mechanism 被引量:1
17
作者 Hailin Shen Yueling Cai +8 位作者 Zhongtao Ma Peng Wang Bingkun Guo Jipeng Cheng Qianqian Li Hongtao Wang Zhongyuan Liu Anmin Nie Jinsong Wu 《Carbon Energy》 SCIE CSCD 2023年第3期160-169,170,171,共12页
Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a meta... Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a metal phosphorous trichalcogenide of MnPS_(3)(manganese phosphorus trisulfide),endowed with a unique and layered van der Waals structure,is highly beneficial for the fast insertion/extraction of alkali metal ions and can facilitate changes in the buffer volume during cycles with robust structural stability.The few-layered MnPS_(3)anodes displayed the desirable specific capacity and excellent rate chargeability owing to their good electronic and ionic conductivities.When assembled as a half-cell lithium-ion battery,a high reversible capacity of 380 mA h g^(−1)was maintained by the MnPS_(3)after 3000 cycles at a high current density of 4 A g^(−1),with a capacity retention of close to or above 100%.In full-cell testing,a reversible capacity of 450 mA h g^(−1)after 200 cycles was maintained as well.The results of in-situ TEM revealed that MnPS_(3)nanoflakes maintained a high structural integrity without exhibiting any pulverization after undergoing large volumetric expansion for the insertion of a large number of lithium ions.Their kinetics of lithium-ion diffusion,stable structure,and high pseudocapacitance contributed to their comprehensive performance,for example,a high specific capacity,rapid charge-discharge,and long cyclability.MnPS_(3)is thus an efficient anode for the next generation of batteries with a fast charge/discharge capability. 展开更多
关键词 cyclic stability in‐situ TEM MnPS3 pseudocapacitance rate performance
下载PDF
Improving the electrochemical performance of α-MoO_(3) electrode using aluminium trifluoromethanesulfonate water-in-salt electrolyte
18
作者 Ayman E.Elkholy Timothy T.Duignan +1 位作者 Ruth Knibbe Xiu Song Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期123-134,I0004,共13页
Orthorhombic molybdenum trioxide(α-MoO_(3)) electrode material experiences severe capacity fading and poor cycling stability in aqueous electrolytes.We investigated the charge-storage performance of α-MoO_(3) electr... Orthorhombic molybdenum trioxide(α-MoO_(3)) electrode material experiences severe capacity fading and poor cycling stability in aqueous electrolytes.We investigated the charge-storage performance of α-MoO_(3) electrode in aluminium trifluoromethanesulfonate(Al(OTf)_(3))-based salt-in-water electrolyte(SiWE) and water-in-salt electrolyte(WiSE).It was found that α-MoO_(3) electrode exhibits significantly different cycling stabilities in both electrolytes with capacity retentions of 8% using the former and87% using the latter.This is because α-MoO_(3) electrode maintains its crystal structure upon cycling in WiSE,but experiences substantial structural collapses and partial dissolution upon cycling in SiWE.This behaviour was inferred from both operando electrogravimetry and ex situ analyses.Research results suggest that the predominant charge-storage mechanism in a-MoO_(3) electrode using WiSE is the intercalation of protons produced from electrolyte hydrolysis with some contribution from surface pseudocapacitance enabled by Al3+ions.A two-volt full cell fabricated from α-MoO_(3) electrode as anode and copper hexacyanoferrate(CuHCF) electrode as cathode using WiSE delivers volumetric and gravimetric energies of 10.4 Wh/L and 26.5 Wh/kg,respectively,with 78% capacity retention after 2500 cycles.This study provides an insightful understanding of the electrochemical performance of α-MoO_(3) electrode in Al(OTf)_(3)-based electrolytes. 展开更多
关键词 Molybdenum oxide Aqueous electrolyte Water-in-salt electrolyte Aqueous batteries pseudocapacitance
下载PDF
Fast charge transport motivated by tunable Mo2C/Mo2N high-quality heterointerface for superior pseudocapacitive storage
19
作者 Yanjun Gao Shaohua Zhang +5 位作者 Lingrui Xu Xiangyang Li Lijie Li Lixia Bao Jiong Peng Xin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期465-477,I0012,共14页
The development of potential transition-metal carbide/nitride heterojunctions is hindered by overall understanding and precise modulation for heterointerface effects.Herein,we demonstrate that Mo_(2)C/Mo_(2)N heteroju... The development of potential transition-metal carbide/nitride heterojunctions is hindered by overall understanding and precise modulation for heterointerface effects.Herein,we demonstrate that Mo_(2)C/Mo_(2)N heterojunction with the precisely regulated high-quality interface can achieve marvelous rate performance and energy output via enlarging the interface-effect range and maximizing "accelerated charge" amount The heterointerface mechanism improving properties is synergistically revealed from kinetics and thermodynamics perspectives.Kinetics analysis confirms that the self-built electric field affords a robust force to drive rapid interface electrons/ions migration.The small adsorption energy,high density of states and quite low diffusion barrier thermodynamically enhance the electrochemical reaction dynamics on heterointerface.Consequently,the almost optimal performance of ultrahigh capacitance retention(85.6% even at 10 A g^(-1)) and pronounced energy output(96.4 Wh kg^(-1))in hybridsupercapacitors than other Mo_(2)C/Mo_(2)N-based materials is presented.This work gives new insight into the energy storage mechanism of heterojunction and guides the design of advanced electrodes. 展开更多
关键词 Energy storage Hybrid supercapacitors pseudocapacitance HETEROJUNCTION High-quality interface
下载PDF
Structure-guided Capacitance Relationships in Oxidized Graphene Porous Materials Based Supercapacitors
20
作者 Srinivas Gadipelli Hanieh Akbari +4 位作者 Juntao Li Christopher A.Howard Hong Zhang Paul R.Shearing Dan J.L.Brett 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期58-69,共12页
Supercapacitors formed from porous carbon and graphene-oxide(GO)materials are usually dominated by either electric double-layer capacitance,pseudo-capacitance,or both.Due to these combined features,reduced GO material... Supercapacitors formed from porous carbon and graphene-oxide(GO)materials are usually dominated by either electric double-layer capacitance,pseudo-capacitance,or both.Due to these combined features,reduced GO materials have been shown to offer superior capacitance over typical nanoporous carbon materials;however,there is a significant variation in reported values,ranging between 25 and 350 F g^(−1).This undermines the structure(e.g.,oxygen functionality and/or surface area)-performance relationships for optimization of cost and scalable factors.This work demonstrates important structure-controlled charge storage relationships.For this,a series of exfoliated graphene(EG)derivatives are produced via thermal-shock exfoliation of GO precursors and following controlled graphitization of EG(GEG)generates materials with varied amounts of porosity,redox-active oxygen groups and graphitic components.Experimental results show significantly varied capacitance values between 30 and 250 F g^(−1)at 1.0 A g^(−1)in GEG structures;this suggests that for a given specific surface area the redox-active and hydrophilic oxygen content can boost the capacitance to 250–300%higher compared to typical mesoporous carbon materials.GEGs with identical oxygen functionality show a surface area governed capacitance.This allows to establish direct structure-performance relationships between 1)redox-active oxygen functional concentration and capacitance and 2)surface area and capacitance. 展开更多
关键词 electric double-layer capacitance graphene-oxide pseudocapacitance structure-performance relationships SUPERCAPACITORS
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部