In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system b...Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.展开更多
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.
基金Major Projects of Gansu Province(No.17ZD2GA010)Power Company Technology Projects of State Grid Corporation in Gansu Province(No.52272716000K)
文摘Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.