期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed
1
作者 Wen Tian Junyi Ji +7 位作者 Hongjiao Li Changjun Liu Lei Song Kui Ma Siyang Tang Shan Zhong Hairong Yue Bin Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期13-19,共7页
Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaO... Rotating packed bed(RPB) is one of the most effective gas–liquid mass transfer enhancement reactors, its effective specific mass transfer area(ae) is critical to understand the mass transfer process. By using the NaOH–CO_(2) chemical absorption method, the aevalues of three RPB reactors with different rotor sizes were measured under different operation conditions. The results showed that the high gravity factor and liquid flow rate were major affecting factors, while the gas flow rate exhibited minor influence.The radius of packing is the dominant equipment factor to affect aevalue. The results indicated that the contact area depends on the dispersion of the liquid phase, thus the centrifugal force of rotating packed bed greatly influenced the aevalue. Moreover, the measured ae/ap(effective specific mass transfer area/specific surface area of packing) values were fitted with dimensionless correlation formulas. The unified correlation formula with dimensionless bed size parameter can well predict the experimental data and the prediction errors were within 15%. 展开更多
关键词 GAS-LIQUID Chemical absorption Mass transfer areas Rotating packed bed(RPB)
下载PDF
Packed Bed Thermocline Thermal Energy Storage for Medium-Temperature Concentrating Solar Systems: Numerical and Experimental Study
2
作者 Nikolaos Stathopoulos Nikolaos Papadimitriou +1 位作者 Vassilis Belessiotis Elias Papanicolaou 《Journal of Power and Energy Engineering》 2023年第5期1-23,共23页
Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between ... Thermal Energy Storage is becoming a necessary component of sustainable energy production systems as it helps alleviate intrinsic limitations of Renewable Energy Sources, such as intermittent use and mismatch between power demand and supply. This paper discusses a packed bed thermocline tank as a thermal energy storage solution. Firstly, this paper presents the development of a numerical model calculating heat transfers within the tank, based on a discretization over several nodes and the nodal formulation of the heat balance equation. The model considers a filler material and a heat transferring fluid and uses the finite difference method to calculate the temperature evolution of the two media across the tank. The model was validated with two different packed bed systems from the literature during a discharging process, presenting a good fit with the experimental results. Secondly, the experimental packed bed is presented and characterized for a charging cycle from ambient temperature to approximately 180?C. The charging experiment was accurately reproduced with the numerical model requiring minimal computational time. Two additional charging modes were simulated with different inlet HTF conditions: constant temperature and varying temperature following the profile produced by a thermal solar collector field. The temperature profiles obtained from the three charging modes were analysed and compared to each other. The proposed numerical and experimental tools will be used in future studies for a better understanding of the design and operating conditions of packed bed thermal energy storage systems. 展开更多
关键词 Thermal Energy Storage packed bed NUMERICAL Model EXPERIMENTAL
下载PDF
Effect of Radial Porosity Oscillation on the Thermal Performance of Packed Bed Latent Heat Storage 被引量:3
3
作者 H.B.Liu C.Y.Zhao 《Engineering》 SCIE EI 2021年第4期515-525,共11页
Owing to its high heat storage capacity and fast heat transfer rate,packed bed latent heat storage(LHS)is considered as a promising method to store thermal energy.In a packed bed,the wall effect can impact the packing... Owing to its high heat storage capacity and fast heat transfer rate,packed bed latent heat storage(LHS)is considered as a promising method to store thermal energy.In a packed bed,the wall effect can impact the packing arrangement of phase change material(PCM)capsules,inducing radial porosity oscillation.In this study,an actual-arrangement-based three-dimensional packed bed LHS model was built to consider the radial porosity oscillation.Its fluid flow and heat transfer were analyzed.With different cylindrical sub-surfaces intercepted along the radial direction in the packed bed,the corresponding relationships between the arrangement of capsules and porosity oscillation were identified.The oscillating distribution of radial porosity led to a non-uniform distribution of heat transfer fluid(HTF)velocity.As a result,radial temperature distributions and liquid fraction distributions of PCMs were further affected.The effects of different dimensionless parameters(e.g.,tube-to-capsule diameter ratio,Reynolds number,and Stefan number)on the radial characteristics of HTF and PCMs were discussed.The results showed that different diameter ratios correspond to different radial porosity distributions.Further,with an increase in diameter ratio,HTF velocity varies significantly in the near wall region while the non-uniformity of HTF velocity in the center region will decrease.The Reynolds and Stefan numbers slightly impact the relative velocity distribution of the HTF-while higher Reynolds numbers can lead to a proportional improvement of velocity,an increase in Stefan number can promote heat storage of the packed bed LHS system. 展开更多
关键词 packed bed latent heat storage Radial porosity oscillation Fluid flow Heat transfer Diameter ratio
下载PDF
Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O_(3) in a rotating packed bed 被引量:2
4
作者 Weizhou Jiao Xingyue Wei +1 位作者 Shengjuan Shao Youzhi Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期133-142,共10页
This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overal... This study investigated catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-MnCu/γ-Al_(2)O_(3)(Cat)in a rotating packed bed(RPB)for the first time.The results showed that the value of the overall decomposition rate constant of ozone(K_(c))and overall volumetric mass transfer coefficient(K_(L)a)are 4.28×10^(-3) s^(-1) and 11.60×10^(-3) s^(-1) respectively at an initial pH of 6,βof 40,Co3(g)of 60 mg·L^(-1)and Q_(L) of 85 L·h^(-1) in deionized water,respectively.Meanwhile,the K_(c) and K_(L)a values of Fenhe water are0.88×10^(-3) s^(-1) and 2.51×10^(-3) s^(-1) lower than deionized water,respectively.In addition,the K_(c) and K_(L)a values in deionized water for the Cat/O_(3)-RPB system are 44.86%and 47.41%higher than that for the Cat/O_(3)-BR(bubbling reactor)system,respectively,indicating that the high gravity technology can facilitate the decomposition and mass transfer of ozone in heterogeneous catalytic ozonation and provide some insights into the industrial wastewater. 展开更多
关键词 Rotating packed bed OZONE Heterogeneous catalysis Overall decomposition rate constant Overall volumetric mass transfer coefficient
下载PDF
Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed:A review 被引量:1
5
作者 Wen-Cong Chen Ya-Wei Fan +5 位作者 Liang-Liang Zhang Bao-Chang Sun Yong Luo Hai-Kui Zou Guang-Wen Chu Jian-Feng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期85-108,共24页
The rotating packed bed(RPB)has been widely used in gas-liquid flow systems as a process intensification device,exhibiting excellent mass transfer enhancement characteristics.However,the complex internal structure and... The rotating packed bed(RPB)has been widely used in gas-liquid flow systems as a process intensification device,exhibiting excellent mass transfer enhancement characteristics.However,the complex internal structure and the high-speed rotation of the rotor in RPB bring significant challenges to study the intensification mechanism by experiment methods.In the past two decades,Computational fluid dynamics(CFD)has been gradually applied to simulate the hydrodynamics and mass transfer characteristics in RPB and instruct the reactor design.This article covers the development of the CFD simulation of gasliquid flow in RPB.Firstly,the improvement of the simulation method in the aspect of mathematical models,geometric models,and solving methods is introduced.Secondly,new progress of CFD simulation about hydrodynamic and mass transfer characteristics in RPB is reviewed,including pressure drop,velocity distribution,flow pattern,and concentration distribution,etc.Some new phenomena such as the end effect area with the maximum turbulent have been revealed by this works.In addition,the exploration of developing new reactor structures by CFD simulation is introduced and it is proved that such new structures are competitive to different applications.The defects of current research and future development directions are also discussed at last. 展开更多
关键词 Rotating packed bed Computational fluid dynamics SIMULATION HYDRODYNAMICS Mass transfer
下载PDF
Numerical simulation and experimental study of the characteristics of packing feature size on liquid flow in a rotating packed bed 被引量:1
6
作者 Xifan Duan Zhiguo Yuan +2 位作者 Youzhi Liu Hangtian Li Weizhou Jiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期22-31,共10页
Rotating packed bed has high efficiency of gas-liquid mass transfer.So it is significant to investigate fluid motion in rotating packed bed.Numerical simulations of the effects of packing feature size on liquid flow c... Rotating packed bed has high efficiency of gas-liquid mass transfer.So it is significant to investigate fluid motion in rotating packed bed.Numerical simulations of the effects of packing feature size on liquid flow characteristics in a rotating packed bed are reported in this paper.The particle image velocimetry is compared with the numerical simulations to validate the turbulent model.Results show that the liquid exists in the packing zone in the form of droplet and liquid line,and the cavity is droplet.When the radial thickness of the packing is less than 0.101 m,liquid line and droplets appear in the cavity.When rotational speed and radial thickness of the packing increase,the average diameter of the droplets becomes smaller,and the droplet size distribution becomes uniform.As the initial velocity of the liquid increases,the average droplet diameter increases and the uniformity of particle size distribution become worse.The droplet velocity increases with the radial thickness of the packing increasing,and gradually decreases when it reaches the cavity region.The effect of packing thickness is most substantial through linear fitting.The predicted and simulated values are within±15%.The cumulative volume distribution curves of the experimental and simulated droplets are consistent with the R-R distribution. 展开更多
关键词 Chemical process strengthening equipment Rotating packed bed Computational fluid dynamics Particle image velocimetry Sieve packing
下载PDF
Liquid-solid mass transfer in a rotating packed bed reactor with structured foam packing 被引量:1
7
作者 Yazhao Liu Zhi hao Li +3 位作者 Guangwen Chu Lei Shao Yong Luo Jianfeng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第10期2507-2512,共6页
A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor ... A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor is a barrier for its design and scale-up. In this work, the liquid–solid mass transfer in a RPB reactor installed with structured foam packing was experimentally studied using copper dissolution by potassium dichromate. Effects of rotational speed, liquid and gas volumetric flow rate on the liquid–solid mass transfer coefficient(kLS) have been investigated. The correlation for predicting kLSwas proposed, and the deviation between the experimental and predicted values was within±12%. The liquid–solid volumetric mass transfer coefficient(kLSaLS) ranged from 0.04–0.14 1^-1, which was approximately 5 times larger than that in the packed bed reactor. This work lays the foundation for modeling of the RPB reactor packed with structured foam packing for heterogeneous catalytic reaction. 展开更多
关键词 Rotating packed bed Liquid–solid mass transfer Structured foam packing Process intensification
下载PDF
Comparison of Mass Transfer Characteristics between Countercurrent-Flow and Crosscurrent-Flow Rotating Packed Bed 被引量:1
8
作者 Qi Guisheng Guo Linya +1 位作者 Liu Youzhi Zhang Dongming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第4期103-111,共9页
The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process ... The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process intensification device. A significant measurement standard for evaluating the performance of RPB is the mass transfer effect. In order to compare the mass transfer characteristics of Counter-RPB and Cross-RPB with the same size, the liquid volumetric mass transfer coefficient(k_La_e) and effective interfacial area(a_e) were measured under identical operating conditions. Meanwhile, the comparison of comprehensive mass transfer performance was conducted using the ratio of ΔP(pressure drop) to kLae as the standard. Experimental results indicated that kLae and ae increased with the increase in liquid spray density q, gas velocity u, and high gravity factor β. Furthermore, compared with the Cross-RPB, the Counter-RPB has higher liquid volumetric mass transfer coefficient and slightly larger effective interfacial area. The experimental results of comprehensive mass transfer performance showed that the Counter-RPB had higher ΔP/k_La_e than the Cross-RPB with changes in liquid spray density and high gravity factor, and there exists a turning point at 0.71 m/s accompanied by a variation with gas velocity. Moreover, the relative error of experimental value to calculated value, which was computed by the correlative expressions of kLae, was less than 5 %. In conclusion, the mass transfer characteristics of RPB are deeply impacted by the manner in which the flows are established and the Cross-RPB would have a great potential for industrial scale-up applications. 展开更多
关键词 rotating packed bed mass transfer crosscurrent-flow countercurrent-flow process intensi fication
下载PDF
Research and development of advanced structured packing in a rotating packed bed
9
作者 Zhi-Guo Yuan Yu-Xia Wang +3 位作者 You-Zhi Liu Dan Wang Wei-Zhou Jiao Peng-Fei Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期178-186,共9页
As the core component of the rotating packing bed,packing is a place for efficient gas–liquid mixing and mass transfer.In this paper,a 3D structured packing composed of a mesh structure and a support structure was de... As the core component of the rotating packing bed,packing is a place for efficient gas–liquid mixing and mass transfer.In this paper,a 3D structured packing composed of a mesh structure and a support structure was designed.The mesh structure is a ring-shaped mesh surrounded by triangular meshes,which is stable in structure and can achieve a high degree of dispersion and aggregation of the liquid phase.The support structure is composed of ring-shaped structural units arranged at a certain angle along the axial direction,which can enhance the turbulence of the airflow while constructing regular gas-phase channels.Circumferential steel meshes of different diameters and supporting structures are alternately combined to form 3D packing,which is loaded in a layered cross-flow rotating packing bed.The results show that under the same operating conditions,the mass transfer performance of 3D packing and wire mesh packing are equivalent,and both are better than pall ring packing.Moreover,the pressure drop of 3D packing is significantly lower than that of pall ring packing and wire mesh packing.The design and implementation of packing the development presented in this paper can be used to develop special structured packing for rotating bed,which can further improve the performance of rotating packed bed(RPB). 展开更多
关键词 Rotating packed bed 3D printed packing 3D modeling Mass transfer Pressure drop Gas–liquid channel
下载PDF
Preparation of Pd/c-Al_(2)O_(3)/nickel foam monolithic catalyst and its performance for selective hydrogenation in a rotating packed bed reactor
10
作者 Hai-Long Liao Bao-Ju Wang +4 位作者 Ya-Zhao Liu Yong Luo Jie-Xin Wang Guang-Wen Chu Jian-Feng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期311-319,共9页
Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed ... Selective hydrogenation plays an important role in chemical industries,yet its selectivity is usually limited by the mass transfer.In this work,the enhanced hydrogenation selectivity was achieved in a rotating packed bed(RPB)reactor with excellent mass transfer efficiency.Aiming to be used under the centrifugal filed,a monolithic catalyst Pd/c-Al_(2)O_(3)/nickel foam suiting for the shape and size of the rotor of RPB reactor was prepared by the electrophoretic deposition method.The mechanical strength of the catalyst can meet the requirement of high centrifugal force in the RPB.The hydrogenation selectivity in the RPB reactor using the 3-methyl-1-pentyn-3-ol hydrogenation system was 3–8 times higher than that in a stirred tank reactor under similar conditions.This work proves the feasibility of intensifying the selectivity of hydrogenation process in the RPB reactor. 展开更多
关键词 Monolithic catalyst Rotating packed bed reactor HYDROGENATION SELECTIVITY
下载PDF
Controllable and high-throughput preparation of microdroplet using an ultra-high speed rotating packed bed
11
作者 Jing Xie Xiangbi Jia +5 位作者 Dan Wang Yingjiao Li Bao-chang Sun Yong Luo Guang-wen Chu Jian-feng Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期116-124,共9页
Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the s... Microdroplets and their dispersion,with a large specific surface area and a short diffusion distance,have been applied in various unit operations and reaction processes.However,it is still a challenge to control the size and size distribution of microdroplets,especially for high-throughput generation.In this work,a novel ultra-high speed rotating packed bed(UHS-RPB)was invented,in which rotating foam packing with a speed of 4000-12000 r·min^(-1) provides microfluidic channels to disperse liquid into microdroplets with high throughput.Then generated microdroplets can be directly dispersed into a continuous falling film for obtaining a mixture of microdroplet dispersion.In this UHS-RPB,the effects of rotational speed,liquid initial velocity,liquid viscosity,liquid surface tension and packing pore size on the average size(d_(32))and size distribution of microdroplets were systematically investigated.Results showed that the UHS-RPB could produce microdroplets with a d_(32) of 25-63μm at a liquid flow rate of 1025 L·h^(-1),and the size distribution of the microdroplets accords well with Rosin-Rammler distribution model.In addi-tion,a correlation was established for the prediction of d_(32),and the predicted d_(32) was in good agreement with the experimental data with a deviation within±15%.These results demonstrated that UHS-RPB could be a promising candidate for controllable preparation of uniform microdroplets. 展开更多
关键词 Ultra-high speed rotating packed bed MICRODROPLET Controllable preparation High throughput
下载PDF
Investigation of thermochemical process of coal particle packed bed reactions for the development of UCG
12
作者 Tata Sutardi Linwei Wang +1 位作者 Nader Karimi Manosh C.Paul 《International Journal of Coal Science & Technology》 EI 2020年第3期476-492,共17页
In this study,a packed bed reactor was developed to investigate the gasification process of coal particles.The effects of coal particle size and heater temperature of reactor were examined to identify the thermochemic... In this study,a packed bed reactor was developed to investigate the gasification process of coal particles.The effects of coal particle size and heater temperature of reactor were examined to identify the thermochemical processes through the packed bed.Three different coal samples with varying size,named as A,B,and C,are used,and the experimental results show that the packed bed with smaller coal size has higher temperature,reaching 624°C,582°C,and 569°C for coal A,B,and C,respectively.In the case of CO formation,the smaller particle size has greater products in the unit of mole fraction over the area of generation.However,the variation in the porosity of the packed bed due to different coal particle sizes affects the reactions through the oxygen access.Consequently,the CO formation is least from the coal packed bed formed by the smallest particle size A.A second test with the temperature variations shows that the higher heater temperature promotes the chemical reactions,resulting in the increased gas products.The findings indicate the important role of coal seam porosity in underground coal gasification application,as well as temperature to promote the syngas productions. 展开更多
关键词 Thermochemical process Particle packed bed Coal particle gasification Gas products Underground coal gasification(UCG)
下载PDF
Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO_(2)catalyst
13
作者 杨坤 沈红伟 +3 位作者 刘月月 刘阳 葛平基 杨德正 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第9期117-126,共10页
Recently,a plasma catalyst was employed to efflciently degrade antibiotic residues in the environment.In this study,the plasma generated in a packed bed dielectric barrier reactor combined with TiO_(2)catalyst is used... Recently,a plasma catalyst was employed to efflciently degrade antibiotic residues in the environment.In this study,the plasma generated in a packed bed dielectric barrier reactor combined with TiO_(2)catalyst is used to degrade the antibiotic tiamulin(TIA)loaded on the surface of simulated soil particles.The effects of applied voltage,composition of the working gas,gas flow rate and presence or absence of catalyst on the degradation effect were studied.It was found that plasma and catalyst can produce a synergistic effect under optimal conditions(applied voltage 25 k V,oxygen ratio 1%,gas flow rate 0.6 l min^(-1),treatment time 5 min).The degradation efflciency of the plasma combined with catalyst can reach 78.6%,which is 18.4%higher than that of plasma without catalyst.When the applied voltage is 30 k V,the gas flow rate is 1 l min^(-1),the oxygen ratio is 1%and the plasma combined with TiO_(2)catalyst treats the sample for 5 min the degradation efflciency of TIA reached 97%.It can be concluded that a higher applied voltage and longer processing times not only lead to more degradation but also result in a lower energy efflciency.Decreasing the oxygen ratio and gas flow rate could improve the degradation efflciency.The relative distribution and identity of the major TIA degradation product generated was determined by high-performance liquid chromatography–mass spectrometry analysis.The mechanism of TIA removal by plasma and TiO_(2)catalyst was analyzed,and the possible degradation path is discussed. 展开更多
关键词 packed bed dielectric barrier discharge plasma catalyst tiamulin(TIA)antibiotics degradation degradation mechanism
下载PDF
Synthesis of Silver Sulf ide Quantum Dots Via the Liquid–Liquid Interface Reaction in a Rotating Packed Bed Reactor
14
作者 Qing Liu Yuan Pu +2 位作者 Zhijian Zhao Jiexin Wang Dan Wang 《Transactions of Tianjin University》 EI CAS 2020年第4期273-282,共10页
We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)w... We developed the high-gravity coupled liquid-liquid interface reaction technique on the basis of the rotating packed bed(RPB)reactor for the continuous and ultrafast synthesis of silver sulfide(Ag2S)quantum dots(QDs)with near-infrared(NIR)luminescence.The formation of Ag2S QDs occurs at the interface of microdroplets,and the average size of Ag2S QDs was 4.5 nm with a narrow size distribution.Ag2S QDs can disperse well in various organic solvents and exhibit NIR luminescence with a peak wavelength at 1270 nm under 980-nm laser excitation.The mechanism of the process intensification was revealed by both the computational fluid dynamics simulation and fluorescence imaging,and the mechanism is attributed to the small and uniform droplet formation in the RPB reactor.This study provides a novel approach for the continuous and ultrafast synthesis of NIR Ag2S QDs for potential scale-up. 展开更多
关键词 Ag2S quantum dots Near-infrared luminescence Rotating packed bed Liquid-liquid interface reaction Process intensification
下载PDF
Multi-point temperature measurements in packed beds using phosphor thermometry and ray tracing simulations
15
作者 Guangtao Xuan Mirko Ebert +3 位作者 Simson Julian Rodrigues Nicole Vorhauer-Huget Christian Lessig Benoit Fond 《Particuology》 SCIE EI CAS CSCD 2024年第2期77-88,共12页
Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product q... Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product quality and energy efficiency.Here we propose a technique to determine the internal temperature distribution of packed beds based on a combination of lifetime-based phosphor ther-mometry,ray tracing simulations,and assimilation of temperature data using finite element heat transfer simulations.To establish and validate the technique,we considered a reproducible regular packing of 6 mm diameter aluminum spheres,with one of the spheres in the top layer being electrically heated.If a sphere inside the packing is coated with thermographic phosphors and excitation light is directed to-wards the packing,luminescence from the coated sphere exits the packed bed after multiple reflection and the sphere's temperature can be determined.Isothermal measurements showed that the temper-ature obtained by phosphor thermometry is independent of the luminescent sphere location.When imaging the luminescence on a camera,the luminescence distribution in recorded image depended,however,on the position of the sphere.Therefore,in setups with multiple phosphor-coated spheres,their signals can be separated using a least squares fit.We demonstrate the approach using a setup with three luminescent spheres and validated the temperature readings against thermocouple measurements.To obtain the spatial signatures for individual sphere positions required for the least squares fit,ray tracing simulations were used.These provide an efficient alternative to single sphere measurements that are only practical for regular spherical packed beds.Multi-point measurements were used as input to a finite element heat transfer simulations to determine parameters such as particle-to-particle air gap distance.With these,the full temperature distribution inside the bed could be assimilated from the measured values. 展开更多
关键词 packed beds Phosphor thermometry Ray tracing Heat transfer simulation Data assimilation
原文传递
Spatially resolved investigation of flame particle interaction in a two dimensional model packed bed
16
作者 Mohammadhassan Khodsiani Reza Namdar +2 位作者 Fathollah Varnik Frank Beyrau Benoit Fond 《Particuology》 SCIE EI CAS CSCD 2024年第2期167-185,共19页
This study investigates the interaction between a premixed methane-air flame and particles inside a model packed bed.The opacity of the spherical packed beds to visible light poses a major barrier to the implementatio... This study investigates the interaction between a premixed methane-air flame and particles inside a model packed bed.The opacity of the spherical packed beds to visible light poses a major barrier to the implementation of highly resolved optical diagnostics,so that no detailed experimental data were so far available for the validation of numerical simulation.Here,a two-dimensional cylindrical packed bed design is set up,which enables direct line-of-sight optical measurements without loss of spatial reso-lution over the fluid region between the particles.In this study,the case of cold metallic cylindrical particles(T=377 K)relevant to start-up of a reactor is investigated using internal particle cooling,which also allows cylinder specific heat transfer rate measurements by differential temperature measurements on the coolant streams.The two dimensional assumption is first verified by measuring the inflow ve-locity and cylinder temperature profile along the cylinders.Chemiluminescence imaging is then per-formed using a telecentric lens to observe the position and geometry of the two-dimensional flame front with respect to the surrounding cylinders without loss of resolution.Simultaneously,the cylinder-specific flame to cylinder heat transfer rates and cylinder surface temperature are measured.As the flame is closely surrounded by the three cooled cylinders,intense heat transfer is observed in this region corresponding to 25±2.5%of the flame thermal power.Flames were stabilised at different positions depending on inflow velocity and equivalence ratio,and a direct correlation between flame to cylinder stand-off distance and the heat transfer rate normalised to the flame thermal power was found for both top and side cylinders.Also,sidewall quenching distances to the curved cylinder surfaces were evaluated,and seem to be influenced by the presence of a warm recirculation zone behind the cylinders.This investigation provides fully resolved flame front position and heat transfer rates for a known geometry and cylinder thermal boundary conditions,and provides validation data for numerical simulations of this high flame particle coupling case. 展开更多
关键词 packed beds Flame-particle interaction Optical diagnostics Sidewall quenching
原文传递
Ray tracing particle image velocimetry-Challenges in the application to a packed bed
17
作者 Christin Velten Mirko Ebert +1 位作者 Christian Lessig Katharina Zahringer 《Particuology》 SCIE EI CAS CSCD 2024年第1期194-208,共15页
Ray tracing Particle Image Velocimetry(RT-PIV)is an optical technique for high resolution velocity measurements in challenging optical systems,such as transparent packed beds,that uses ray tracing to correct for disto... Ray tracing Particle Image Velocimetry(RT-PIV)is an optical technique for high resolution velocity measurements in challenging optical systems,such as transparent packed beds,that uses ray tracing to correct for distortions introduced by transparent geometries in the light paths.The ray tracing based correction is a post processing step applied to the raw PIV particle images before classical PIV evaluation.In this study,RT-PIV is performed in the top layer of a body centred cubic(bcc)sphere packing with gaseous flow,where optical access is obtained by the use of transparent N-BK7 glass balls with a diameter of d=40 mm.RT-PIV introduces new experimental and numerical challenges,for example a limited field of view,illumination difficulties,a very large required depth of field and high sensitivity to geometric parameters used in the ray tracing correction.These challenges and their implications are the main scope and discussed in the present work.Further,the validation of the ray tracing reconstruction step is presented and examples for the obtained corrected vector fields in a packed bed are given.The results show the strength of the method in reconstructing velocity fields behind transparent spheres that would not have been accessible by optical measurement techniques without the ray tracing correction. 展开更多
关键词 Ray tracing particle image velocimetry(RT-PIV) Transparent spherical particles packed bed Distortion correction Gas flow
原文传递
Comparing two IBM implementations for the simulation of uniform packed beds
18
作者 Christian Gorges Maximilian Brommer +5 位作者 Christin Velten Siegmar Wirtz Enric Illana Mahiques Viktor Scherer Katharina Zahringer Berend van Wachem 《Particuology》 SCIE EI CAS CSCD 2024年第3期1-12,共12页
Nowadays,the design of fixed packed bed reactors still relies on empirical correlations,which,especially for small tube to particle diameter ratios,are mostly too inaccurate because of the presence of wall effects.The... Nowadays,the design of fixed packed bed reactors still relies on empirical correlations,which,especially for small tube to particle diameter ratios,are mostly too inaccurate because of the presence of wall effects.Therefore,the simulation of fixed packed bed reactors plays an important role to predict and control the flow and process parameters in such,nowadays and in the future.Because of its straightforward applicability to non-uniform packings with particles of arbitrary shapes,the immersed boundary method(IBM)has advantages over other numerical methods and is used more and more frequently.This paper compares two approaches of IBMs for the simulation of fixed bed reactors with spherical shaped particles.The classic,smooth approach is compared to the straightforward to implement blocked-off method for velocity fields above the fixed bed for particle Reynolds numbers of 300 and 500.Results from experimental inline PIV-measurements of the reactor to be simulated serve as a basis for comparison.Very good agreement with the experiment is found for both simulation methodologies with higher resolutions,considering the more stable flow at a particle Reynolds number of 300.Differences in the different IBM approaches occurred for the more unsteady flow at a particle Reynolds number of 500.Compared to the blocked-off method,the smooth IBM reflects the formation of additional jets and recirculation zones better right above the bed,though increasing the fluid mesh resolution improves the accuracy of the blocked-off method.Overall,a more diffusive behaviour is found for the blocked-off simulations due to the stairstep representation,which is avoided by using interpolation stencils as in the smooth IBM.With higher mesh refinement in the blocked-off IBM this effect can be reduced,but this also increases the computational effort. 展开更多
关键词 Immersed boundary method packed bed reactor Uniform particle packing
原文传递
Removal of nitric oxide from simulated flue gas using aqueous persulfate with activation of ferrous ethylenediaminetetraacetate in the rotating packed bed
19
作者 Da Guo Guisheng Qi +3 位作者 Dong Chen Jiabao Niu Youzhi Liu Weizhou Jiao 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第4期460-469,共10页
Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment.Advanced persulfate oxidation technology is a workab... Nitric oxide being a major gas pollutant has attracted much attention and various technologies have been developed to reduce NO emission to preserve the environment.Advanced persulfate oxidation technology is a workable and effective choice for wet flue gas denitrification due to its high efficiency and green advantages.However,NO absorption rate is limited and affected by mass transfer limitation of NO and aqueous persulfate in traditional reactors.In this study,a rotating packed bed(RPB)was employed as a gas-liquid absorption device to elevate the NO removal efficiency(η_(NO))by aqueous persulfate((NH_(4))_(2)S_(2)O_(8))activated by ferrous ethylenediaminetetraacetate(Fe^(^(2+))-EDTA).The experimental results regarding the NO absorption were obtained by investigating the effect of various operating parameters on the removal efficiency of NO in RPB.Increasing the concentration of(NH_(4))_(2)S_(2)O_(8) and liquid-gas ratio could promoted the oxidation and absorption of NO while theη_(NO) decreased with the increase of the gas flow and NO concentration.In addition,improving the high gravity factor increased theη_(NO) and the total volumetric mass transfer coefficient(K_(G)α )which raise theη_(NO) up to more than 75%under the investigated system.These observations proved that the RPB can enhance the gas-liquid mass transfer process in NO absorption.The correlation formula between K_(G)α and the influencing factors was determined by regression calculation,which is used to guide the industrial scale-up application of the system in NO removal.The presence of O_(2) also had a negative effect on the NO removal process and through electron spin resonance spectrometer detection and product analysis,it was revealed that Fe^(2+)-EDTA activated(NH_(4))2S_(2)O_(8) to produce•SO_(4)^(-),•OH and•O_(2)^(-),played a leading role in the oxidation of NO,to produce NO_(3)^(-)as the final product.The obtained results demonstrated a good applicable potential of RPB/PS/Fe^(2+)-EDTA in the removal of NO from flue gases. 展开更多
关键词 rotating packed bed Fe2+-EDTA sulfate radical hydroxyl radical NO removal efficiency
原文传递
Mixed convective heat transfer characteristics and mechanisms in structured packed beds
20
作者 Yuelong Qu Liang Wang +4 位作者 Xipeng Lin Haisheng Chen Shuang Zhang Haoshu Ling Yakai Bai 《Particuology》 SCIE EI CAS CSCD 2023年第11期122-133,共12页
The structured packed bed is considered a promising reactor owing to its low pressure drop and good heat transfer performance.In the heat transfer process of thermal storage in packed beds,natural convection plays an ... The structured packed bed is considered a promising reactor owing to its low pressure drop and good heat transfer performance.In the heat transfer process of thermal storage in packed beds,natural convection plays an important role.To obtain the mixed convective heat transfer characteristics and mechanisms in packed beds,numerical simulations and coupling analyses were carried out in this study on the unsteady process of fluid flow and heat transfer.A three-dimensional model of the flow channel in the packed bed was established,and the Navier–Stokes equations and Laminar model were adopted for the computations.The effects of the driving force on fluid flow around a particle were studied in detail.The differences in velocity and density distributions under different flow directions due to effect of the aiding flow or opposing flow were intuitively demonstrated and quantitatively analyzed.It was found that the driving force strengthens the fluid flow near the particle surface when aiding flow occurs and inhibits the fluid flow when opposing flow occurs.The boundary layer structure was changed by the natural convection,which in turn influences the field synergy angle.For the aiding flow,the coordination between the velocity and density fields is higher than that for the opposing flow.By analysis the effects of physical parameters on mixed convective heat transfer,it is indicated that with an increase in the fluid-solid temperature difference or the particle diameter,or a decrease in the fluid temperature,the strengthening or inhibiting effect of natural convection on the heat transfer became more significant. 展开更多
关键词 Computational fluiddynamics packed beds Natural convection Heat transfer
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部