The TCM philosophy of a meridian and associated channels pertains to the specific function of one or more organs. We define the <span style="font-family:Verdana;">Lung Primary Meridian (LUM) together w...The TCM philosophy of a meridian and associated channels pertains to the specific function of one or more organs. We define the <span style="font-family:Verdana;">Lung Primary Meridian (LUM) together with the </span><span style="font-family:Verdana;">Lung Sinew (LUSC), Divergent (LUDC), Luo-connecting (LULCC) Channels as a system of routes plus some parts of the body (such as muscles) to fulfil respiration, as a main function under different situations. There is very limited information about the Lung associated channels in classical literature of TCM. With a clear focus on the function of respiration, we have carried out a detailed analysis of the biomedical consequence of stimulating the LUM, analysed the roles played by LUSC, LUDC, and LULCC. The updated LUM and LUDC include acupoints of other meridians, serving the same purpose of performing satisfactory respiration starting from checking the quality of the inflow through the nose. The LUSC includes the respiratory muscles (plus the associated connective tissues) extending to various parts of the body. The muscles of the limb (as part of the LUSC) embrace the nerves that provide routes for somatosensory reflexes and play the role of locomotion, providing voluntary respiration via the pectoralis muscles. The muscles of LUSC are bounded by stiff connective tissue layers, forming compartments, and are part of the pulley system for various body locomotions. Within a compartment, the interstitial fluid, blood, lymph flows must be potent to protect the associated nerves related to LUM;the healthy state of the LUSC also provides freedom of various types of locomotion. The LULCC exists because the vagus nerve has a part of it passing through the spinal cords all the way down to the sacrum domain, with exiting nerve innervating two-third of the large intestine. The crucial steps of our deductions </span><span style="font-family:Verdana;">are supported by experimental evidence based on modern neurophysiology and kinesiology. We discover that all the four channels stated above work as a unit system to allow respiration to be possible under various postures/conditions. </span><span style="font-family:Verdana;">The complexity of structures and processes is eased off by providing 29 figures and 13 tables for the relevant muscles and nerves. In addition to respiration, the Lung system in TCM context includes interaction of this system with the sweat gland and neuroendocrine system;such aspects will be left to another study.</span>展开更多
OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retriev...OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using “heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation” as the key words. SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included. MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated. RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system. CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the occurrence, maintenance, and symptoms of arrhythmia.展开更多
文摘The TCM philosophy of a meridian and associated channels pertains to the specific function of one or more organs. We define the <span style="font-family:Verdana;">Lung Primary Meridian (LUM) together with the </span><span style="font-family:Verdana;">Lung Sinew (LUSC), Divergent (LUDC), Luo-connecting (LULCC) Channels as a system of routes plus some parts of the body (such as muscles) to fulfil respiration, as a main function under different situations. There is very limited information about the Lung associated channels in classical literature of TCM. With a clear focus on the function of respiration, we have carried out a detailed analysis of the biomedical consequence of stimulating the LUM, analysed the roles played by LUSC, LUDC, and LULCC. The updated LUM and LUDC include acupoints of other meridians, serving the same purpose of performing satisfactory respiration starting from checking the quality of the inflow through the nose. The LUSC includes the respiratory muscles (plus the associated connective tissues) extending to various parts of the body. The muscles of the limb (as part of the LUSC) embrace the nerves that provide routes for somatosensory reflexes and play the role of locomotion, providing voluntary respiration via the pectoralis muscles. The muscles of LUSC are bounded by stiff connective tissue layers, forming compartments, and are part of the pulley system for various body locomotions. Within a compartment, the interstitial fluid, blood, lymph flows must be potent to protect the associated nerves related to LUM;the healthy state of the LUSC also provides freedom of various types of locomotion. The LULCC exists because the vagus nerve has a part of it passing through the spinal cords all the way down to the sacrum domain, with exiting nerve innervating two-third of the large intestine. The crucial steps of our deductions </span><span style="font-family:Verdana;">are supported by experimental evidence based on modern neurophysiology and kinesiology. We discover that all the four channels stated above work as a unit system to allow respiration to be possible under various postures/conditions. </span><span style="font-family:Verdana;">The complexity of structures and processes is eased off by providing 29 figures and 13 tables for the relevant muscles and nerves. In addition to respiration, the Lung system in TCM context includes interaction of this system with the sweat gland and neuroendocrine system;such aspects will be left to another study.</span>
文摘OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using “heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation” as the key words. SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included. MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated. RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system. CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in the occurrence, maintenance, and symptoms of arrhythmia.