In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
Reinsurance is an effective risk management tool for insurers to stabilize their profitability. In a typical reinsurance treaty, an insurer cedes part of the loss to a reinsurer. As the insurer faces an increasing num...Reinsurance is an effective risk management tool for insurers to stabilize their profitability. In a typical reinsurance treaty, an insurer cedes part of the loss to a reinsurer. As the insurer faces an increasing number of total losses in the insurance market, the insurer might expect the reinsurer to bear an increasing proportion of the total loss, that is the insurer might expect the reinsurer to pay an increasing proportion of the total claim amount when he faces an increasing number of total claims in the insurance market. Motivated by this, we study the optimal reinsurance problem under the Vajda condition. To prevent moral hazard and reflect the spirit of reinsurance, we assume that the retained loss function is increasing and the ceded loss function satisfies the Vajda condition. We derive the explicit expression of the optimal reinsurance under the TVaR risk measure and TVaR premium principle from the perspective of both an insurer and a reinsurer. Our results show that the explicit expression of the optimal reinsurance is in the form of two or three interconnected line segments. Under an additional mild constraint, we get the optimal parameters and find the optimal reinsurance strategy is full reinsurance, no reinsurance, stop loss reinsurance, or quota-share reinsurance. Finally, we gave an example to analyze the impact of the weighting factor on optimal reinsurance.展开更多
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for...This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.展开更多
Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front...Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front is obtained in closed-form, enabling the derivation of various solutions in a convenient and efficient way. The advantage of analytical solution is the possibility of deriving accurate, exact and well-understood solutions, which is especially useful for policy analysis. An extension of the method to include multiple objectives is provided with the objectives being classified into two types. Such an extension expands the applicability of the developed techniques.展开更多
Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved ...Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.展开更多
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence...It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive.展开更多
A competitive co-evolutionary Multi-Objective Genetic Algorithm (cc-MOGA) was used to approximate a Pareto front of efficient silvicultural regimes for Eucalyptus fastigata. The three objectives to be maximised includ...A competitive co-evolutionary Multi-Objective Genetic Algorithm (cc-MOGA) was used to approximate a Pareto front of efficient silvicultural regimes for Eucalyptus fastigata. The three objectives to be maximised included, sawlog, pulpwood and carbon sequestration payment. Three carbon price scenarios (3CPS), i.e. NZ $25, NZ $50 and NZ $100 for a tonne of CO2 sequestered, were used to assess the impact on silvicultural regimes, against a fourth non-carbon Pareto set of efficient regimes (nonCPS), determined from a cc-MOGA with two objectives, i.e. competing sawlog and pulpwood productions. Carbon prices included in stand valuation were found to influence the silvicultural regimes by increasing the rotation length and lowering the final crop number before clearfell. However, there were no significant changes in the frequency, timing, and intensity of thinning operations amongst all the four Pareto sets of solutions. However, the 3CPS were not significantly different from each other, which meant that these silvicultural regimes were insensitive to the price of carbon. This was because maximising carbon sequestration was directly related to the biological growth rate. As such an optimal mix of frequency, intensity, and timing of thinning maintained maximum growth rate for as long as possible for any one rotation.展开更多
Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary a...Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.展开更多
For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially...For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms.展开更多
A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization v...A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.展开更多
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed...Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.展开更多
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
文摘Reinsurance is an effective risk management tool for insurers to stabilize their profitability. In a typical reinsurance treaty, an insurer cedes part of the loss to a reinsurer. As the insurer faces an increasing number of total losses in the insurance market, the insurer might expect the reinsurer to bear an increasing proportion of the total loss, that is the insurer might expect the reinsurer to pay an increasing proportion of the total claim amount when he faces an increasing number of total claims in the insurance market. Motivated by this, we study the optimal reinsurance problem under the Vajda condition. To prevent moral hazard and reflect the spirit of reinsurance, we assume that the retained loss function is increasing and the ceded loss function satisfies the Vajda condition. We derive the explicit expression of the optimal reinsurance under the TVaR risk measure and TVaR premium principle from the perspective of both an insurer and a reinsurer. Our results show that the explicit expression of the optimal reinsurance is in the form of two or three interconnected line segments. Under an additional mild constraint, we get the optimal parameters and find the optimal reinsurance strategy is full reinsurance, no reinsurance, stop loss reinsurance, or quota-share reinsurance. Finally, we gave an example to analyze the impact of the weighting factor on optimal reinsurance.
文摘This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems.
文摘Multiple objectives to be optimized simultaneously are prevalent in real-life problems. This paper develops a new Pareto Method for bi-objective optimization which yields analytical solutions. The Pareto optimal front is obtained in closed-form, enabling the derivation of various solutions in a convenient and efficient way. The advantage of analytical solution is the possibility of deriving accurate, exact and well-understood solutions, which is especially useful for policy analysis. An extension of the method to include multiple objectives is provided with the objectives being classified into two types. Such an extension expands the applicability of the developed techniques.
文摘Unlike the shortest path problem that has only one optimal solution and can be solved in polynomial time, the muhi-objective shortest path problem ( MSPP ) has a set of pareto optimal solutions and cannot be solved in polynomial time. The present algorithms focused mainly on how to obtain a precisely pareto optimal solution for MSPP resulting in a long time to obtain multiple pareto optimal solutions with them. In order to obtain a set of satisfied solutions for MSPP in reasonable time to meet the demand of a decision maker, a genetic algo- rithm MSPP-GA is presented to solve the MSPP with typically competing objectives, cost and time, in this pa- per. The encoding of the solution and the operators such as crossover, mutation and selection are developed. The algorithm introduced pareto domination tournament and sharing based selection operator, which can not only directly search the pareto optimal frontier but also maintain the diversity of populations in the process of evolutionary computation. Experimental results show that MSPP-GA can obtain most efficient solutions distributed all along the pareto frontier in less time than an exact algorithm. The algorithm proposed in this paper provides a new and effective method of how to obtain the set of pareto optimal solutions for other multiple objective optimization problems in a short time.
基金supported by the National Natural Science Foundation of China(Grant No.61976101)the University Natural Science Research Project of Anhui Province(Grant No.2023AH040056)+4 种基金the Natural Science Research Project of Anhui Province(Graduate Research Project,Grant No.YJS20210463)the Funding Plan for Scientic Research Activities of Academic and Technical Leaders and Reserve Candidates in Anhui Province(Grant No.2021H264)the Top Talent Project of Disciplines(Majors)in Colleges and Universities in Anhui Province(Grant No.gxbjZD2022021)the University Synergy Innovation Program of Anhui Province,China(GXXT-2022-033)supported by the Innovation Fund for Postgraduates of Huaibei Normal University(Grant Nos.cx2022041,yx2021023,CX2023043).
文摘It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive.
文摘A competitive co-evolutionary Multi-Objective Genetic Algorithm (cc-MOGA) was used to approximate a Pareto front of efficient silvicultural regimes for Eucalyptus fastigata. The three objectives to be maximised included, sawlog, pulpwood and carbon sequestration payment. Three carbon price scenarios (3CPS), i.e. NZ $25, NZ $50 and NZ $100 for a tonne of CO2 sequestered, were used to assess the impact on silvicultural regimes, against a fourth non-carbon Pareto set of efficient regimes (nonCPS), determined from a cc-MOGA with two objectives, i.e. competing sawlog and pulpwood productions. Carbon prices included in stand valuation were found to influence the silvicultural regimes by increasing the rotation length and lowering the final crop number before clearfell. However, there were no significant changes in the frequency, timing, and intensity of thinning operations amongst all the four Pareto sets of solutions. However, the 3CPS were not significantly different from each other, which meant that these silvicultural regimes were insensitive to the price of carbon. This was because maximising carbon sequestration was directly related to the biological growth rate. As such an optimal mix of frequency, intensity, and timing of thinning maintained maximum growth rate for as long as possible for any one rotation.
文摘Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.
基金supported by the National Natural Sciences Foundation of China(61603069,61533005,61522304,U1560102)the National Key Research and Development Program of China(2017YFA0700300)
文摘For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50608022)
文摘A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.
基金supported in part by the National Natural Science Foundation of China(61806051,61903078)Natural Science Foundation of Shanghai(20ZR1400400)+2 种基金Agricultural Project of the Shanghai Committee of Science and Technology(16391902800)the Fundamental Research Funds for the Central Universities(2232020D-48)the Project of the Humanities and Social Sciences on Young Fund of the Ministry of Education in China(Research on swarm intelligence collaborative robust optimization scheduling for high-dimensional dynamic decisionmaking system(20YJCZH052))。
文摘Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.