The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling w...The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation...Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.展开更多
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model...This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.展开更多
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified wa...By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.展开更多
In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he so...In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs.展开更多
The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison ...The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison of the exact and numerical solutions, and it has been discovered through the tables that the amount of error between the exact and numerical solutions is very small and almost non-existent, and the graph also shows how the exact solution of absolutely applies to the numerical solution. This demonstrates the precision of the Adomian decomposition method (ADM) for solving the nonlinear partial differential equation with Maple18. And that in terms of obtaining numerical results, this approach is characterized by ease, speed, and high accuracy.展开更多
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary fun...In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary functions for some nonlinear partial differential equations, which contain solitary wave solutions, trigonometric function solutions, and rational solutions, are obtained.展开更多
The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are est...The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.展开更多
In this paper,physics-informed liquid networks(PILNs)are proposed based on liquid time-constant networks(LTC)for solving nonlinear partial differential equations(PDEs).In this approach,the network state is controlled ...In this paper,physics-informed liquid networks(PILNs)are proposed based on liquid time-constant networks(LTC)for solving nonlinear partial differential equations(PDEs).In this approach,the network state is controlled via ordinary differential equations(ODEs).The significant advantage is that neurons controlled by ODEs are more expressive compared to simple activation functions.In addition,the PILNs use difference schemes instead of automatic differentiation to construct the residuals of PDEs,which avoid information loss in the neighborhood of sampling points.As this method draws on both the traveling wave method and physics-informed neural networks(PINNs),it has a better physical interpretation.Finally,the KdV equation and the nonlinear Schr¨odinger equation are solved to test the generalization ability of the PILNs.To the best of the authors’knowledge,this is the first deep learning method that uses ODEs to simulate the numerical solutions of PDEs.展开更多
Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2...Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.展开更多
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u...Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
The thermistor problem is a coupled system of nonlinear PDEs with mixed boundary conditions. The goal of this paper is to study the existence, boundedness and uniqueness of the weak solution for this problem.
In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pr...In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
The travelling solutions of the Burgers equation may be used as the seed solutions. According to the fraction-type deforming relation between the Burgers equation and the plasma motion equation, some travelling soluti...The travelling solutions of the Burgers equation may be used as the seed solutions. According to the fraction-type deforming relation between the Burgers equation and the plasma motion equation, some travelling solutions of the plasma motion equation are achieved with this seed solutions as discussed in this paper.展开更多
Lie symmetry method is applied to analyze a nonlinear elastic wave equation for longitudinal deformations with third-order anharmonic corrections to the elastic energy. Symmetry algebra is found and reductions to seco...Lie symmetry method is applied to analyze a nonlinear elastic wave equation for longitudinal deformations with third-order anharmonic corrections to the elastic energy. Symmetry algebra is found and reductions to second-order ordinary differential equations (ODEs) are obtained through invariance under different symmetries. The reduced ODEs are further analyzed to obtain several exact solutions in an explicit form. It was observed in the literature that anharmonic corrections generally lead to solutions with time-dependent singularities in finite times singularities, we also obtain solutions which Along with solutions with time-dependent do not exhibit time-dependent singularities.展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications.Data that we encounter often have certain embedded sparsity structures.That is,if t...More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications.Data that we encounter often have certain embedded sparsity structures.That is,if they are represented in an appropriate basis,their energies can concentrate on a small number of basis functions.This paper is devoted to a numerical study of adaptive approximation of solutions of nonlinear partial differential equations whose solutions may have singularities,by deep neural networks(DNNs)with a sparse regularization with multiple parameters.Noting that DNNs have an intrinsic multi-scale structure which is favorable for adaptive representation of functions,by employing a penalty with multiple parameters,we develop DNNs with a multi-scale sparse regularization(SDNN)for effectively representing functions having certain singularities.We then apply the proposed SDNN to numerical solutions of the Burgers equation and the Schrödinger equation.Numerical examples confirm that solutions generated by the proposed SDNN are sparse and accurate.展开更多
文摘The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 0 2 0 3 7)
文摘Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10661005)Fujian Province Science and Technology Plan Item (Grant No. 2008F5019)
文摘This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
文摘By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.
基金supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No.06AZ081)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No.KLMM0806)the shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs.
文摘The nonlinear partial differential equation is solved using the Adomian decomposition method (ADM) in this article. A number of examples have been provided to illustrate the numerical results, which is the comparison of the exact and numerical solutions, and it has been discovered through the tables that the amount of error between the exact and numerical solutions is very small and almost non-existent, and the graph also shows how the exact solution of absolutely applies to the numerical solution. This demonstrates the precision of the Adomian decomposition method (ADM) for solving the nonlinear partial differential equation with Maple18. And that in terms of obtaining numerical results, this approach is characterized by ease, speed, and high accuracy.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90511009 and 40305006 Cprrespondence author,
文摘In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
文摘In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary functions for some nonlinear partial differential equations, which contain solitary wave solutions, trigonometric function solutions, and rational solutions, are obtained.
基金the Science Foundation of the Science and Technology Commission of Shanghai Municipality(No.075105118)the Shanghai Leading Academic Discipline Project(No.T0401)the Fund for E-institute of Shanghai Universities(No.E03004)
文摘The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.
基金supported by the National Natural Science Foundation of China under Grant Nos.11975143 and 12105161.
文摘In this paper,physics-informed liquid networks(PILNs)are proposed based on liquid time-constant networks(LTC)for solving nonlinear partial differential equations(PDEs).In this approach,the network state is controlled via ordinary differential equations(ODEs).The significant advantage is that neurons controlled by ODEs are more expressive compared to simple activation functions.In addition,the PILNs use difference schemes instead of automatic differentiation to construct the residuals of PDEs,which avoid information loss in the neighborhood of sampling points.As this method draws on both the traveling wave method and physics-informed neural networks(PINNs),it has a better physical interpretation.Finally,the KdV equation and the nonlinear Schr¨odinger equation are solved to test the generalization ability of the PILNs.To the best of the authors’knowledge,this is the first deep learning method that uses ODEs to simulate the numerical solutions of PDEs.
文摘Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc., are reduced to an integrable ODE expressed by u" +p(u)(u')^2 + q(u) = 0 whose generai solution can be given. Furthermore, combining complete discrimination system for polynomiai, the classifications of all single travelling wave solutions to these equations are obtained. The equation u"+p(u)(u')^2+q(u) = 0 includes the equation (u')^2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
文摘The thermistor problem is a coupled system of nonlinear PDEs with mixed boundary conditions. The goal of this paper is to study the existence, boundedness and uniqueness of the weak solution for this problem.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB318000)
文摘In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
文摘The travelling solutions of the Burgers equation may be used as the seed solutions. According to the fraction-type deforming relation between the Burgers equation and the plasma motion equation, some travelling solutions of the plasma motion equation are achieved with this seed solutions as discussed in this paper.
文摘Lie symmetry method is applied to analyze a nonlinear elastic wave equation for longitudinal deformations with third-order anharmonic corrections to the elastic energy. Symmetry algebra is found and reductions to second-order ordinary differential equations (ODEs) are obtained through invariance under different symmetries. The reduced ODEs are further analyzed to obtain several exact solutions in an explicit form. It was observed in the literature that anharmonic corrections generally lead to solutions with time-dependent singularities in finite times singularities, we also obtain solutions which Along with solutions with time-dependent do not exhibit time-dependent singularities.
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.
基金Y.Xu is supported in part by US National Science Foundation under grant DMS1912958T.Zeng is supported in part by the National Natural Science Foundation of China under grants 12071160 and U1811464+2 种基金by the Natural Science Foundation of Guangdong Province under grant 2018A0303130067by the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University under grant 2021022by the Opening Project of Guangdong Key Laboratory of Big Data Analysis and Processing under grant 202101.
文摘More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications.Data that we encounter often have certain embedded sparsity structures.That is,if they are represented in an appropriate basis,their energies can concentrate on a small number of basis functions.This paper is devoted to a numerical study of adaptive approximation of solutions of nonlinear partial differential equations whose solutions may have singularities,by deep neural networks(DNNs)with a sparse regularization with multiple parameters.Noting that DNNs have an intrinsic multi-scale structure which is favorable for adaptive representation of functions,by employing a penalty with multiple parameters,we develop DNNs with a multi-scale sparse regularization(SDNN)for effectively representing functions having certain singularities.We then apply the proposed SDNN to numerical solutions of the Burgers equation and the Schrödinger equation.Numerical examples confirm that solutions generated by the proposed SDNN are sparse and accurate.