In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me...In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.展开更多
The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concen...The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.展开更多
Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with u...Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.展开更多
壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)...壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TG)、Zeta电位仪、X射线光电子能谱(XPS)及等技术表征其结构特性,优化吸附解析条件,并评估其对藻蓝蛋白中Pb(Ⅱ)的实际去除效果。结果显示,与CPB和Gel-CPB相比,CMC改性的CPB(CMC-CPB)热稳定性高、表面粗糙多孔、比表面积大(20.28±1.35 m^(2)/g)及Zeta电位低,对金属离子吸附能力强,且解析再生利用率高。FTIR图谱分析显示改性前后CPB官能团结构未发生明显变化,其主要结构官能团为羧基、羟基和氨基。TG分析表明改性前后的CMC-CPB的热稳定性显著高于CPB和Gel-CPB(P<0.05)。XPS光谱分析表明三种吸附剂成功吸附了Pb(Ⅱ),其中CMC-CPB对Pb(Ⅱ)的吸收峰最强。三种吸附剂(CPB、Gel-CPB和CMC-CPB)去除Pb(Ⅱ)的最佳pH和温度分别为6.0和60℃,对Pb(Ⅱ)的吸附过程均符合Langmuir吸附等温模型(R^(2)=0.9543~0.9811)和准二级动力学模型(R^(2)=0.9963~0.9991),该吸附属于单分子层化学吸附,即-COO、-OH、-CO-NH与Pb(Ⅱ)之间的络合作用。根据Langmuir模型曲线评估,CMC-CPB对Pb(Ⅱ)的最大吸附容量q_(max)为69.37 mg/g,显著高于Gel-CPB和CPB(P<0.05)。综合在藻蓝蛋白中的应用效果,CMC-CPB低成本高效安全地去除藻类和藻蓝蛋白食品中Pb(Ⅱ)具有更广阔的前景。展开更多
基金supported by the National Natural Science Foundation of China(Nos.11605275 and 11675247)。
文摘In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis.
基金Projects(51708377,51678311)supported by the National Natural Science Foundation of ChinaProject(BK20170339)supported by the Natural Science Foundation of Jiangsu Province,China+6 种基金Project(2016M591756)supported by the China Postdoctoral Science FoundationProject(17KJB560008)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(1601175C)supported by the Jiangsu Planned Projects for Postdoctoral Research Funds,ChinaProject(2016ZD18)supported by the Jiangsu Provincial Department of Housing and Urban-Rural Development,ChinaProject(2016T05)supported by the Jiangsu Provincial Transport Bureau,ChinaProject(2017A610304)supported by the Natural Science Foundation of Ningbo City,ChinaProject supported by the Bureau of Housing and Urban-Rural Development of Suzhou,China
文摘The desorption test was conducted to evaluate the desorption behavior of Pb(Ⅱ)and Cd(Ⅱ)using citric acid.The influential factors that were considered included initial Pb(Ⅱ),Cd(Ⅱ)contamination levels in soil,concentration of citric acid,reaction time,soil pH value and ionic strength.The test results indicated that the desorption was a rapid reaction(less than 6 h),and the removal percentages of Cd(Ⅱ)and Pb(Ⅱ)increased with the increasing contamination levels,concentration of citric acid and the addition of Na^+,Ca^(2+),Na^+, Cl~– and the chelating of organic ligands.
基金Deanship of Scientific Research(DSR)at King Saud University(KSU),Saudi Arabia for financially supporting this research project(No.RG-1435-078)。
文摘Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.
文摘壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TG)、Zeta电位仪、X射线光电子能谱(XPS)及等技术表征其结构特性,优化吸附解析条件,并评估其对藻蓝蛋白中Pb(Ⅱ)的实际去除效果。结果显示,与CPB和Gel-CPB相比,CMC改性的CPB(CMC-CPB)热稳定性高、表面粗糙多孔、比表面积大(20.28±1.35 m^(2)/g)及Zeta电位低,对金属离子吸附能力强,且解析再生利用率高。FTIR图谱分析显示改性前后CPB官能团结构未发生明显变化,其主要结构官能团为羧基、羟基和氨基。TG分析表明改性前后的CMC-CPB的热稳定性显著高于CPB和Gel-CPB(P<0.05)。XPS光谱分析表明三种吸附剂成功吸附了Pb(Ⅱ),其中CMC-CPB对Pb(Ⅱ)的吸收峰最强。三种吸附剂(CPB、Gel-CPB和CMC-CPB)去除Pb(Ⅱ)的最佳pH和温度分别为6.0和60℃,对Pb(Ⅱ)的吸附过程均符合Langmuir吸附等温模型(R^(2)=0.9543~0.9811)和准二级动力学模型(R^(2)=0.9963~0.9991),该吸附属于单分子层化学吸附,即-COO、-OH、-CO-NH与Pb(Ⅱ)之间的络合作用。根据Langmuir模型曲线评估,CMC-CPB对Pb(Ⅱ)的最大吸附容量q_(max)为69.37 mg/g,显著高于Gel-CPB和CPB(P<0.05)。综合在藻蓝蛋白中的应用效果,CMC-CPB低成本高效安全地去除藻类和藻蓝蛋白食品中Pb(Ⅱ)具有更广阔的前景。