The relation between otolith weight (OW) and the age of marine fish is studied. A total of 222 individuals of bighead white croaker, Pennahia macrocephalus were sampled seasonally in the mouth of the Beibu Gulf, the S...The relation between otolith weight (OW) and the age of marine fish is studied. A total of 222 individuals of bighead white croaker, Pennahia macrocephalus were sampled seasonally in the mouth of the Beibu Gulf, the South China Sea, in 2007. Since there are no significant differences in sagittal OW between otolith in pairs (P≥0.05), the undamaged left sagittal otolith is used for age determination. The highest correlations among standard length, OW and fish ages are confirmed by linear, exponential and multinomial regression. Results show that sagittal OW overlaps only occasionally among age groups, and to individuals with similar standard length, the older and slower-growing fish has a heavier otolith because of the continued otolith material deposition. There are differences in sagittal OW among different age groups and significant positive linear relationship with age (P<0.05). The age readings can be verified by plotting the sagittal OW versus the standard length for age groups, and the individuals with similar standard length but in different ages can be separated by sagittal OW frequency analysis. Mostly, the predicted ages using the regression between sagittal OW and ages are closed to the observed ages by counting annulus on scale. It indicates that the sagittal OW analysis is a useful technique for validating the accuracy of age determination by annuli counts, especially for individuals of similar size. Furthermore, the technique is applied for Pennahia macrocephalus with discussion in this paper.展开更多
To investigate the genetic structures and differentiation of different wild populations of white croaker (Pennahia argentara), horizontal starch gel electrophoresis was performed on 133 individuals collected from fi...To investigate the genetic structures and differentiation of different wild populations of white croaker (Pennahia argentara), horizontal starch gel electrophoresis was performed on 133 individuals collected from five different locations in China and Japan. The eleven enzyme systems revealed 15 loci, of which eleven were polymorphic. The percentage ofpolymorphic loci of white croaker populations varied from 6.67% to 53.3.3%; the mean observed and expected heterozygosity ranged from 0.0033 to 0.0133 and 0.0032 to 0.0191, respectively. The expected heterozygosity revealed a low genetic variability for white croaker in comparison with other marine fishes. The genetic distances between populations ranged from 0.00005 to 0.00026. A weak differentiation was observed within each clade and between clades; and no significant differences in gene frequencies among populations were observed in white croaker. Among the five populations, three Chinese populations showed more genetic diversity than that in Japanese populations.展开更多
基金Supported by the National Natural Science Foundation of China (No. 30771653)Bureau of Fisheries, Ministry of Agriculture
文摘The relation between otolith weight (OW) and the age of marine fish is studied. A total of 222 individuals of bighead white croaker, Pennahia macrocephalus were sampled seasonally in the mouth of the Beibu Gulf, the South China Sea, in 2007. Since there are no significant differences in sagittal OW between otolith in pairs (P≥0.05), the undamaged left sagittal otolith is used for age determination. The highest correlations among standard length, OW and fish ages are confirmed by linear, exponential and multinomial regression. Results show that sagittal OW overlaps only occasionally among age groups, and to individuals with similar standard length, the older and slower-growing fish has a heavier otolith because of the continued otolith material deposition. There are differences in sagittal OW among different age groups and significant positive linear relationship with age (P<0.05). The age readings can be verified by plotting the sagittal OW versus the standard length for age groups, and the individuals with similar standard length but in different ages can be separated by sagittal OW frequency analysis. Mostly, the predicted ages using the regression between sagittal OW and ages are closed to the observed ages by counting annulus on scale. It indicates that the sagittal OW analysis is a useful technique for validating the accuracy of age determination by annuli counts, especially for individuals of similar size. Furthermore, the technique is applied for Pennahia macrocephalus with discussion in this paper.
基金supported by the National Natural Science Foundation of China(No,30471329)the National Key Basic Research Program from the Ministry of Science and Technology,P.R.China(2005CB422306)High-Tech Development Program of China(863 Program)(2006AA09Z418).
文摘To investigate the genetic structures and differentiation of different wild populations of white croaker (Pennahia argentara), horizontal starch gel electrophoresis was performed on 133 individuals collected from five different locations in China and Japan. The eleven enzyme systems revealed 15 loci, of which eleven were polymorphic. The percentage ofpolymorphic loci of white croaker populations varied from 6.67% to 53.3.3%; the mean observed and expected heterozygosity ranged from 0.0033 to 0.0133 and 0.0032 to 0.0191, respectively. The expected heterozygosity revealed a low genetic variability for white croaker in comparison with other marine fishes. The genetic distances between populations ranged from 0.00005 to 0.00026. A weak differentiation was observed within each clade and between clades; and no significant differences in gene frequencies among populations were observed in white croaker. Among the five populations, three Chinese populations showed more genetic diversity than that in Japanese populations.