期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Terpyridine-based metallo-cuboctahedron nanomaterials for efficient photocatalytic degradation of persistent organic pollutants
1
作者 Qixia Bai Yan Huang +11 位作者 Zhihong Chen Yilin Pan Xiaohan Zhang Qingwu Long Qiaoan Yang Tun Wu Ting-Zheng Xie Mingjian Wang Hongguang Luo Chun Hu Pingshan Wang Zhe Zhang 《Nano Research》 SCIE EI CSCD 2024年第8期6833-6840,共8页
Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities,easy modification,high tunability,... Metal–organic cage photocatalysts with nanoscale dimensions have received wide attention in the field of photocatalytic environmental pollutant treatment due to their large cavities,easy modification,high tunability,and enriched active sites.Herein,we prepared a series of dihydroanthracene-cored terpyridine-based metallo-cuboctahedron nanomaterials through a selfassembly method,which exhibited satisfactory degradation performance for persistent organic pollutants under visible light irradiation.In particular,under light conditions,S1-Zn,one of the prepared nanomaterials,produced photogenerated holes oxidizing water molecules to∙OH,which attacked ibuprofen(IBU)for up to 95% degradation.Simultaneously,the corresponding photogenerated electrons reduced the dissolved oxygen in water,producing 66.2μmol/L hydrogen peroxide.The obtained supramolecular photocatalytic materials have a stable structure with non-precious metals and do not require a sacrificial agent.The metal sites of metallo-cuboctahedrons adsorb pollutants and transfer captured holes to them,accelerating degradation and promoting simultaneous H_(2)O_(2) production.This work not only proposes a simple and efficient synthesis method for supramolecular photocatalysts but also opens up opportunities for efficient,low-cost,and multifunctional materials for environmental persistent organic pollutants treatment. 展开更多
关键词 supramolecular cages SELF-ASSEMBLY photocatalytic pollutant degradation H2O2 production
原文传递
Synthesis and application of covalent triazine framework/graphene hybrids for photocatalysis
2
作者 HAO Feini HAN Qing 《分子科学学报》 CAS 2024年第3期206-216,共11页
In recent years,photocatalysis with efficient,low-cost and stable metal-free catalysts is one of the most promising technologies for non-polluting energy production and resource-economic environment purifying.Benefiti... In recent years,photocatalysis with efficient,low-cost and stable metal-free catalysts is one of the most promising technologies for non-polluting energy production and resource-economic environment purifying.Benefiting from the molecularly precise backbones,regular and homogeneous porosity,lightelement composition,nitrogen-rich system with unique electronic band structure of two-dimensional(2D)covalent triazine framework(CTF),as well as the huge specific surface area,superior thermal conductivity,excellent carrier mobility and mechanical properties of 2D graphene,CTF/graphene hybrid-based photocatalysts show great application potential in the field of photocatalysis.In this review,the recent development in synthesis of CTF/graphene hybrid-based photocatalysts,and their applications in photocatalytic water splitting for hydrogen production and photocatalytic degradation of pollutants are summarized.Firstly,we briefly describe the molecular structures,physicochemical properties,and synthetic strategies for CTF/graphene hybrid-based photocatalysts including solution mixing method,in-situ polymerization method and sol-gel method.We further assess the impact of different preparation methods on the structure,morphology,and interacting model between CTF and graphene in CTF/graphene hybrids.Following the various preparation process for CTF/graphene hybrid-based photocatalysts,these methods are analyzed and compared regarding their merits and demerits.Secondly,the functions of CTF/graphene hybrid-based photocatalysts obtained from different synthesis approaches that enhance the catalytic activity for photocataLytic hydrogen evolution and photocatalytic degradation of pollutants are discussed from the three aspects of light harvesting,charge separation and transfer,and surface catalysis.Particular focus has been placed on the catalytic mechanisms of CTF/graphene hybridbased photocatalysts for enhanced photocatalytic hydrogen evolution and improved photocatalytic degradation of pollutants.Then the rational manipulation of selection and building units of CTF,connecting bonds between CTF and graphene,dimensions and pore structures of CTF/graphene hybrids in design of CTF/graphene hybrid-based photocatalysts is discussed,aiming to inspire critical thinking about the effective strategies for modification of photocatalysts rather than the development of novel materials.In the end,the challenges and some future trends of CTF/graphene hybrids as advanced photocatalysts are also discussed from three aspects:catalysts design,performance stability and reaction mechanism.The approaches offer potential solutions to address the challenges of largescale production,catalyst activity and stability in the further research and development of new types of metal-free hybrid photocatalysts with high efficiency. 展开更多
关键词 covalent triazine framework graphene hybrid photocatalytic water splitting photocatalytic degradation of pollutants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部