To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,...To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...展开更多
To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year fi...To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year field experiment,Xianyu 335,a widely released hybrid in China,was planted at 60 000 plants ha^(–1 )(conventional planting density,CD) and 90 000 plants ha^(–1) (high planting density,HD),respectively.Until all the filaments protruded from the ear,at which point the plants were subjected to the removal of 1/2 (T1),1/3 (T2) and 1/4 (T3) each leaf length per plant,no leaf removal served as the control(CK).We evaluated the leaf source reduction on canopy photosynthetic matter production and N accumulation of different planting densities.Under CD,decreasing leaf source markedly decreased photosynthetic rate (P_(n)),effective quantum yield of photosystem II (ΦPSII) and the maximal efficiency of photosystem II photochemistry (F_(v)/F_(m)) at grain filling stage,reduced post-silking dry matter accumulation,harvest index (HI),and the yield.Compared with the CK,the 2-year average yields of T1,T2 and T3 treatments decreased by 35.4,23.8 and 8.3%,respectively.Meanwhile,decreasing leaf source reduced the root bleeding sap intensity,the content of soluble sugar in the bleeding sap,post-silking N uptake,and N accumulation in grain.The grain N accumulation in T1,T2 and T3 decreased by 26.7,16.5 and 12.8% compared with CK,respectively.Under HD,compared to other treatments,excising T3 markedly improved the leaf P_(n),ΦPSII and F_(v)/F_(m) at late-grain filling stage,increased the post-silking dry matter accumulation,HI and the grain yield.The yield of T3 was 9.2,35.7 and 20.1% higher than that of CK,T1 and T2 on average,respectively.The T3 treatment also increased the root bleeding sap intensity,the content of soluble sugar in the bleeding sap and post-silking N uptake and N accumulation in grain.Compared with CK,T1 and T2 treatments,the grain N accumulation in T3 increased by 13.1,40.9 and 25.2% on average,respectively.In addition,under the same source reduction treatment,the maize yield of HD was significantly higher than that of CD.Therefore,planting density should be increased in maize production for higher grain yield.Under HD,moderate decreasing leaf source improved photosynthetic performance and increased the post-silking dry matter accumulation and HI,and thus the grain yield.In addition,the improvement of photosynthetic performance improved the root function and promoted postsilking N uptake,which led to the increase of N accumulation in grain.展开更多
To clarify the response and adaptability of peanut under salt stress,Huayu 25 was used as the material,and non-salt stress(CK),0.15% salt stress(S1),and 0.3% salt stress(S2) were applied as three treatments.The study ...To clarify the response and adaptability of peanut under salt stress,Huayu 25 was used as the material,and non-salt stress(CK),0.15% salt stress(S1),and 0.3% salt stress(S2) were applied as three treatments.The study analysed the effects of salt stress on photosynthetic characteristics,photosynthetic substances accumulation and distribution as well as the ecological adaptability of peanuts.The results showed that net photosynthetic rate(Pn),SPAD value,leaf area,and peanut yield were reduced under salt stress.Pn in CK was 13.71 and 28.72% higher than that in S1 and S2 at the 50 th day after planting,respectively.At the same growth period,the SPAD value among treatments was ranked as follows: CK>S1>S2.The 100-pod mass,100-kernel mass,kernel rate to pod,and pod mass per plant were reduced under salt stress,and the trend was CK>S1>S2.The distribution proportion of dry matter in different organs of peanut plant was changed to adapt to such stress.Roots under salt stress intensively distributed in a 0-40 cm soil layer for salt resistance.Dry mass proportion in stems and pods increased during the vegetative stage and early period of reproductive stage,respectively.The maximum growth rates of the pod volume,pod dry weight,and seed kernel dry weight all declined,and the pod and kernel volume at harvest were reduced,improving the seed plumpness under salt stress.This finding could be useful in growing peanut in saline soil.展开更多
The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems.Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is str...The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems.Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result,an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine(Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature(rs= 0.655,p = 0.00315) or available soil water supply(rs= 0.892,p = 0.0068). In autumn within different years, significant correlation was shown with two(temperature of air and soil; rs= 0.789 and 0.896, p = 0.00045 and 0.000006,respectively) and four factors: temperature of air(rs=0.749, p = 0.00129) and soil(rs= 0.84, p = 0.00000),available soil water supply(rs= 0.846, p = 0.00013) and irradiance(rs= 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn.This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn.展开更多
High photosynthetic productivity and widephotosynthetic adaptability are two importantphysiological characteristics for the sustained highyield and wider growing range of rice.Preliminaryexperiments indicated that the...High photosynthetic productivity and widephotosynthetic adaptability are two importantphysiological characteristics for the sustained highyield and wider growing range of rice.Preliminaryexperiments indicated that the utilization ofbeterosis between two different ecotype rices,US展开更多
The vast area and marked variation of China make it difficult to predict the impact of climate changes on rice productivity in different regions.Therefore,analyzing the spatial and temporal characteristics of rice pot...The vast area and marked variation of China make it difficult to predict the impact of climate changes on rice productivity in different regions.Therefore,analyzing the spatial and temporal characteristics of rice potential productivity and predicting the possible yield increment in main rice production regions of China is important for guiding rice production and ensuring food security.Using meteorological data of main rice production regions from 1961 to 1970(the 1960s) and from 1996 to 2005(the 2000s) provided by 333 stations,the potential photosynthetic,photo-thermal and climatic productivities in rice crop of the 1960s and 2000s in main rice production regions of China were predicted,and differences in the spatial and temporal distribution characteristics between two decades were analyzed.Additionally,the potential yield increment based on the high yield target and actual yield of rice in the 2000s were predicted.Compared with the 1960s,the potential photosynthetic productivity of the 2000s was seen to have decreased by 5.40%,with rates in northeastern and southwestern China found to be lower than those in central and southern China.The potential photo-thermal productivity was generally seen to decrease(2.56%) throughout main rice production regions,decreasing most in central and southern China.However,an increase was seen in northeastern and southwestern China.The potential climatic productivity was observed to be lower(7.44%) in the 2000s compared to the 1960s,but increased in parts of central and southern China.The potential yield increment from the actual yield to high yield target in the 2000s were no more than 6×103 kg ha-1 and ranged from 6×103 to 12×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The yield increasing potential from the high yield target to the potential photo-thermal productivity in 2000s were less than 10×103 kg ha-1 and ranged from 10×103 to 30×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The potential yield increment contributed by irrigation was between 5×103 and 20×103 kg ha-1,and between 20×103 and 40×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.These findings suggested that the high yield could be optimized by making full use of climatic resources and through a reasonable management plan in rice crop.展开更多
Understanding the characteristics of rice productivity is of great importance for achieving high yield formation.However,such traits have not yet been studied for different ages of hydroponically grown long-mat rice s...Understanding the characteristics of rice productivity is of great importance for achieving high yield formation.However,such traits have not yet been studied for different ages of hydroponically grown long-mat rice seedlings(HLMS),which constitutes a new method of seedling cultivation.Field experiments were conducted to evaluate the effects of seedling age on the growth stage,photosynthesis characteristics,dry matter production,and yield of HLMS.A conventional japonica rice cultivar(Wuyunjing 24)and an indica hybrid rice cultivar(6 Liangyou 9368)were used as test materials.The results showed that the whole phase was shortened by 13-15 days for young seedlings(13-day-old)compared with old seedlings(27-day-old),which occurred because the growth process accelerated with the transplantation of young seedlings.As seedling age increased,the dry matter weight of stems of individual plants and of the population increased at the transplanting stage but decreased at the maturity stage(MS).Compared with that of 27-day-old seedlings,the average ratio of panicle weight to total plant dry weight of 13-day-old seedlings during a 2-year period increased by 3.71%for Wuyunjing 24 and by 3.78%for 6 Liangyou 9368 at the MS.Moreover,as seedling age increased,the leaf area index and photosynthetic potential decreased for both cultivars,and the photosynthetic rate markedly decreased at the heading stage(HS).With the exception of that of Wuyunjing 24 from the jointing stage to the HS in 2014,the crop growth rate was higher for young seedlings than for old seedlings.Grain yield significantly decreased with seedling age,but no significant difference was detected between the 13-and 20-day-old seedlings for either cultivar.Therefore,equilibrious and high biological yield formation,vigorous growth in the late stages,and high photosynthetic production capacity are important characteristics and causes of the efficient and sustainable output of photosynthetic systems and for achieving high yield formation in young transplanted seedlings(13-20-day-old).展开更多
The thermo-physical phenomena existing in the process of hydrogen production by photosynthetic bacteria with ultrafine corn stover directly affect the energy consumption of biological hydrogen production system,the ac...The thermo-physical phenomena existing in the process of hydrogen production by photosynthetic bacteria with ultrafine corn stover directly affect the energy consumption of biological hydrogen production system,the activity of hydrogen production,and hydrogen production rate.In order to discover theoretical basis for optimizing process parameters of the photosynthetic bioreactor for ultrafine corn stover,experimental investigation was conducted to identify the effects of the granularity of ultrafine corn stover on the temperature variation using a self-developed photosynthetic bio-hydrogen thermal-effect experimental device.This paper describes experimental research on temperature variation of reaction liquid with ultrafine-ground corn stover in photosynthetic hydrogen production,and on the temperature field and change trend of reaction liquid of corn stover with different granularities in bio-hydrogen production.Experimental results showed that,the greater the granularity of corn stover,the slower the temperature rising speed of the reaction liquid with corn stover in the initial phase of photosynthetic hydrogen production,and the lower the relative average temperature of reaction liquid in photosynthetic hydrogen production.This result is of great significance in research on the photosynthetic hydrogen production technology from biomass,providing a theoretical basis for thermal effect in solar photosynthetic hydrogen production.展开更多
基金Supported by Special Project of China Meteorological Administrationon Effects of Climate Change on Solar Energy in East ChinaSpecial fund of Meteorological Science and Technology Services inShandong Province in 2006~~
文摘To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...
基金the National Key Research and Development Program of China(2016YFD0300103,2017YFD0300603)the Innovation Engineering Plan Project of Jilin Province,China(CXGC2017ZY015)。
文摘To date,little attention has been paid to the effects of leaf source reduction on photosynthetic matter production,root function and post-silking N uptake characteristics at different planting densities.In a 2-year field experiment,Xianyu 335,a widely released hybrid in China,was planted at 60 000 plants ha^(–1 )(conventional planting density,CD) and 90 000 plants ha^(–1) (high planting density,HD),respectively.Until all the filaments protruded from the ear,at which point the plants were subjected to the removal of 1/2 (T1),1/3 (T2) and 1/4 (T3) each leaf length per plant,no leaf removal served as the control(CK).We evaluated the leaf source reduction on canopy photosynthetic matter production and N accumulation of different planting densities.Under CD,decreasing leaf source markedly decreased photosynthetic rate (P_(n)),effective quantum yield of photosystem II (ΦPSII) and the maximal efficiency of photosystem II photochemistry (F_(v)/F_(m)) at grain filling stage,reduced post-silking dry matter accumulation,harvest index (HI),and the yield.Compared with the CK,the 2-year average yields of T1,T2 and T3 treatments decreased by 35.4,23.8 and 8.3%,respectively.Meanwhile,decreasing leaf source reduced the root bleeding sap intensity,the content of soluble sugar in the bleeding sap,post-silking N uptake,and N accumulation in grain.The grain N accumulation in T1,T2 and T3 decreased by 26.7,16.5 and 12.8% compared with CK,respectively.Under HD,compared to other treatments,excising T3 markedly improved the leaf P_(n),ΦPSII and F_(v)/F_(m) at late-grain filling stage,increased the post-silking dry matter accumulation,HI and the grain yield.The yield of T3 was 9.2,35.7 and 20.1% higher than that of CK,T1 and T2 on average,respectively.The T3 treatment also increased the root bleeding sap intensity,the content of soluble sugar in the bleeding sap and post-silking N uptake and N accumulation in grain.Compared with CK,T1 and T2 treatments,the grain N accumulation in T3 increased by 13.1,40.9 and 25.2% on average,respectively.In addition,under the same source reduction treatment,the maize yield of HD was significantly higher than that of CD.Therefore,planting density should be increased in maize production for higher grain yield.Under HD,moderate decreasing leaf source improved photosynthetic performance and increased the post-silking dry matter accumulation and HI,and thus the grain yield.In addition,the improvement of photosynthetic performance improved the root function and promoted postsilking N uptake,which led to the increase of N accumulation in grain.
基金funded by the earmarked fund for China Agriculture Research System(CARS-13)the National Natural Science Foundation of China(31771732)+3 种基金the Shandong Modern Agriculture Innovation Team,China(peanut)(SDAIT-04-06)the Key Research and Development Plan of Shandong Province,China(2017CXGC0308)the Key Scientific and Technological Innovation Program of Shandong Academy of Agricultural Sciences,China(CXGC2017D02)the Shandong Provincial Natural Science Foundation,China(ZR2017YL023)
文摘To clarify the response and adaptability of peanut under salt stress,Huayu 25 was used as the material,and non-salt stress(CK),0.15% salt stress(S1),and 0.3% salt stress(S2) were applied as three treatments.The study analysed the effects of salt stress on photosynthetic characteristics,photosynthetic substances accumulation and distribution as well as the ecological adaptability of peanuts.The results showed that net photosynthetic rate(Pn),SPAD value,leaf area,and peanut yield were reduced under salt stress.Pn in CK was 13.71 and 28.72% higher than that in S1 and S2 at the 50 th day after planting,respectively.At the same growth period,the SPAD value among treatments was ranked as follows: CK>S1>S2.The 100-pod mass,100-kernel mass,kernel rate to pod,and pod mass per plant were reduced under salt stress,and the trend was CK>S1>S2.The distribution proportion of dry matter in different organs of peanut plant was changed to adapt to such stress.Roots under salt stress intensively distributed in a 0-40 cm soil layer for salt resistance.Dry mass proportion in stems and pods increased during the vegetative stage and early period of reproductive stage,respectively.The maximum growth rates of the pod volume,pod dry weight,and seed kernel dry weight all declined,and the pod and kernel volume at harvest were reduced,improving the seed plumpness under salt stress.This finding could be useful in growing peanut in saline soil.
基金funded by The Program of Basic Research of the Presidium of the Russian Academy of Sciences No.23 ‘‘Biodiversity’’(Project 23.31:Relationship between the use of environmental resources and photosynthesis of conifers as a factor in the sustainability and biological diversity of forest ecosystems in Northern Eurasia)
文摘The taiga coniferous forests of the Siberian region are the main carbon sinks in the forest ecosystems.Quantitatively, the size of the carbon accumulation is determined by the photosynthetic productivity, which is strongly influenced by environmental factors. As a result,an assessment of the relationship between environmental factors and photosynthetic productivity makes it possible to calculate and even predict carbon sinks in coniferous forests at the regional level. However, at various stages of the vegetative period, the force of the connection between environmental conditions and the productivity of photosynthesis may change. In this research, correlations between the photosynthetic activity of Scots pine(Pinus sylvestris L.) with the environmental conditions were compared in spring and in autumn. In spring, close positive correlation of the maximum daily net photosynthesis was identified with only one environmental factor. For different years, correlations were for soil temperature(rs= 0.655,p = 0.00315) or available soil water supply(rs= 0.892,p = 0.0068). In autumn within different years, significant correlation was shown with two(temperature of air and soil; rs= 0.789 and 0.896, p = 0.00045 and 0.000006,respectively) and four factors: temperature of air(rs=0.749, p = 0.00129) and soil(rs= 0.84, p = 0.00000),available soil water supply(rs= 0.846, p = 0.00013) and irradiance(rs= 0.826, p = 0.000001). Photosynthetic activity has a weaker connection with changes in environmental factors in the spring, as compared to autumn.This is explained by the multidirectional influence of environmental conditions on photosynthesis in this period and by the necessity of earlier photosynthesis onset, despite the unfavorable conditions. This data may be useful for predicting the flow of carbon in dependence on environmental factors in this region in spring and in autumn.
文摘High photosynthetic productivity and widephotosynthetic adaptability are two importantphysiological characteristics for the sustained highyield and wider growing range of rice.Preliminaryexperiments indicated that the utilization ofbeterosis between two different ecotype rices,US
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2011BAD21B03)the National Basic Research Program of China (2009CB118608)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)
文摘The vast area and marked variation of China make it difficult to predict the impact of climate changes on rice productivity in different regions.Therefore,analyzing the spatial and temporal characteristics of rice potential productivity and predicting the possible yield increment in main rice production regions of China is important for guiding rice production and ensuring food security.Using meteorological data of main rice production regions from 1961 to 1970(the 1960s) and from 1996 to 2005(the 2000s) provided by 333 stations,the potential photosynthetic,photo-thermal and climatic productivities in rice crop of the 1960s and 2000s in main rice production regions of China were predicted,and differences in the spatial and temporal distribution characteristics between two decades were analyzed.Additionally,the potential yield increment based on the high yield target and actual yield of rice in the 2000s were predicted.Compared with the 1960s,the potential photosynthetic productivity of the 2000s was seen to have decreased by 5.40%,with rates in northeastern and southwestern China found to be lower than those in central and southern China.The potential photo-thermal productivity was generally seen to decrease(2.56%) throughout main rice production regions,decreasing most in central and southern China.However,an increase was seen in northeastern and southwestern China.The potential climatic productivity was observed to be lower(7.44%) in the 2000s compared to the 1960s,but increased in parts of central and southern China.The potential yield increment from the actual yield to high yield target in the 2000s were no more than 6×103 kg ha-1 and ranged from 6×103 to 12×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The yield increasing potential from the high yield target to the potential photo-thermal productivity in 2000s were less than 10×103 kg ha-1 and ranged from 10×103 to 30×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.The potential yield increment contributed by irrigation was between 5×103 and 20×103 kg ha-1,and between 20×103 and 40×103 kg ha-1 in most of the single-and double-cropping rice growing regions,respectively.These findings suggested that the high yield could be optimized by making full use of climatic resources and through a reasonable management plan in rice crop.
基金Funding was provided by the National Key Research and Development Program of China(2017YFD0301200,2018YFD0300803,2015BAD01B03)the Jiangsu Key Research and Development Program,China(BE2017369)the Jiangsu Agricultural Science and Technology Innovation Fund,China(JASTIF,CX(18)1002).
文摘Understanding the characteristics of rice productivity is of great importance for achieving high yield formation.However,such traits have not yet been studied for different ages of hydroponically grown long-mat rice seedlings(HLMS),which constitutes a new method of seedling cultivation.Field experiments were conducted to evaluate the effects of seedling age on the growth stage,photosynthesis characteristics,dry matter production,and yield of HLMS.A conventional japonica rice cultivar(Wuyunjing 24)and an indica hybrid rice cultivar(6 Liangyou 9368)were used as test materials.The results showed that the whole phase was shortened by 13-15 days for young seedlings(13-day-old)compared with old seedlings(27-day-old),which occurred because the growth process accelerated with the transplantation of young seedlings.As seedling age increased,the dry matter weight of stems of individual plants and of the population increased at the transplanting stage but decreased at the maturity stage(MS).Compared with that of 27-day-old seedlings,the average ratio of panicle weight to total plant dry weight of 13-day-old seedlings during a 2-year period increased by 3.71%for Wuyunjing 24 and by 3.78%for 6 Liangyou 9368 at the MS.Moreover,as seedling age increased,the leaf area index and photosynthetic potential decreased for both cultivars,and the photosynthetic rate markedly decreased at the heading stage(HS).With the exception of that of Wuyunjing 24 from the jointing stage to the HS in 2014,the crop growth rate was higher for young seedlings than for old seedlings.Grain yield significantly decreased with seedling age,but no significant difference was detected between the 13-and 20-day-old seedlings for either cultivar.Therefore,equilibrious and high biological yield formation,vigorous growth in the late stages,and high photosynthetic production capacity are important characteristics and causes of the efficient and sustainable output of photosynthetic systems and for achieving high yield formation in young transplanted seedlings(13-20-day-old).
基金financially supported by the National Natural Science Foundation of China(50976029)“Study of the ultrastructural straw hydrogen producing and metabolic hot process”The National High Technology Research and Development Program(i.e.,863 Program)of China(2012AA051502)“Research and demonstration of the key technology for biological hydrogen production”.
文摘The thermo-physical phenomena existing in the process of hydrogen production by photosynthetic bacteria with ultrafine corn stover directly affect the energy consumption of biological hydrogen production system,the activity of hydrogen production,and hydrogen production rate.In order to discover theoretical basis for optimizing process parameters of the photosynthetic bioreactor for ultrafine corn stover,experimental investigation was conducted to identify the effects of the granularity of ultrafine corn stover on the temperature variation using a self-developed photosynthetic bio-hydrogen thermal-effect experimental device.This paper describes experimental research on temperature variation of reaction liquid with ultrafine-ground corn stover in photosynthetic hydrogen production,and on the temperature field and change trend of reaction liquid of corn stover with different granularities in bio-hydrogen production.Experimental results showed that,the greater the granularity of corn stover,the slower the temperature rising speed of the reaction liquid with corn stover in the initial phase of photosynthetic hydrogen production,and the lower the relative average temperature of reaction liquid in photosynthetic hydrogen production.This result is of great significance in research on the photosynthetic hydrogen production technology from biomass,providing a theoretical basis for thermal effect in solar photosynthetic hydrogen production.