Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and sm...Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.展开更多
[Objectives]To study the differences of growth rate,morphology,ultrastructure,pigment content and antioxidant enzyme activity of free-living conchocelis of cultivated type of Neopyropia yezoensis under different light...[Objectives]To study the differences of growth rate,morphology,ultrastructure,pigment content and antioxidant enzyme activity of free-living conchocelis of cultivated type of Neopyropia yezoensis under different light qualities(white,red,blue,and green light).[Methods]The study was carried out through light quality design and culture,growth rate determination,microstructure and ultrastructure observation,chlorophyll a content and carotenoid content determination,phycobiliprotein content determination,malondialdehyde(MDA)content determination,superoxide dismutase(SOD)activity determination.[Results]After 21 d of culture,the specific growth rate(SGR)and chlorophyll a content of free-living conchocelis of N.yezoensis were significantly increased by white light(WL),followed by red light(RL)and green light(GL),and they were the lowest under blue light(BL).Compared with the WL group,the BL group had the highest content of phycoerythrin(PE),and the RL and GL groups had the highest content of phycocyanin(PC).The algal body of WL group was normal black brown,and the cell wall was the thickest.In RL and GL groups,the algal bodies were green,and their diameters and cell wall thicknesses were similar to those in WL group.In BL group,the algal body was bright red,the diameter was the smallest,the cell wall was the thinnest,and the ultrastructure showed that the number of plastoglobulus on the thylakoid was the largest.After BL irradiation,the highest MDA content and the lowest SOD activity were observed.The results revealed that WL is the most beneficial to the growth of free-living conchocelis,followed by RL and GL,while BL has adverse effects.[Conclusions]This study explored the most suitable light quality conditions for the propagation of free-living conchocelis.It is expected to provide germplasm guarantee for the production and seedling of N.yezoensis.展开更多
[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to stud...[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas.展开更多
A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being high...A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.展开更多
[Objective]The aim was to study the effects of sunflower artificial aging on seed vigor and physiological characteristics.[Method] The varieties of seed germination capacity,vigor of germination,germination index,vigo...[Objective]The aim was to study the effects of sunflower artificial aging on seed vigor and physiological characteristics.[Method] The varieties of seed germination capacity,vigor of germination,germination index,vigor index,peroxidase(POD) activity,superoxide dismutase(SOD) activity and malondialdehyde(MDA) content for four sunflower germplasms such as'SunM20','Deep Purple Minle','Da San Kui Hua 4'and'Ji Kui 24'were studied under high temperature and high humidity conditions(100% RH,45 ℃) for different days(0 d,2 d,4 d,6 d,8 d,10 d).[Result]The result showed that the germination capacity,vigor of germination,germination index,vigor index,POD activity,SOD activity declined gradually with the increase of seed aging days,whereas MDA content enhanced by degrees;The diggerences of resistance to artifical aging existed among the four accessions,'SunM20'was the most resistant one,and exhibited the strongest seed vigor,highest activities of two protective enzyme(POD,SOD) and lowest content of MDA at the uniform condition,moreover,the seed vigor and protective enzyme activities of'SunM20'changed slowest among the four materials during the aging process.[Conclusion]The distinct reduction of POD,SOD activities maybe the main reasons for the decrease of sunflower seed vigor at the artificial aging,and the gradual accumulation of a few MDA accelerated seeds aging.展开更多
Canopy temperature strongly influences crop yield formation and is closely related to plant physiological traits.However, the effects of nitrogen treatment on canopy temperature and rice growth have yet to be comprehe...Canopy temperature strongly influences crop yield formation and is closely related to plant physiological traits.However, the effects of nitrogen treatment on canopy temperature and rice growth have yet to be comprehensively examined. We conducted a two-year field experiment with three rice varieties(HD-5, NJ-9108, and YJ-805) and three nitrogen treatments(zero-N control(CK), 200 kg ha~(–1)(MN), and 300 kg ha~(–1)(HN)). We measured canopy temperature using a drone equipped with a high-precision camera at the six stages of the growth period. Generally,canopy temperature was significantly higher for CK than for MN and HN during the tillering, jointing, booting, and heading stages. The temperature was not significantly different among the nitrogen treatments between the milky and waxy stages. The canopy temperature of different rice varieties was found to follow the order: HD-5>NJ-9108>YJ-805, but the difference was not significant. The canopy temperature of rice was mainly related to plant traits, such as shoot fresh weight(correlation coefficient r=–0.895), plant water content(–0.912), net photosynthesis(–0.84), stomatal conductance(–0.91), transpiration rate(–0.90), and leaf stomatal area(–0.83). A structural equation model(SEM) showed that nitrogen fertilizer was an important factor affecting the rice canopy temperature.Our study revealed:(1) A suite of plant traits was associated with the nitrogen effects on canopy temperature,(2) the heading stage was the best time to observe rice canopy temperature, and(3) at that stage, canopy temperature was negatively correlated with rice yield, panicle number, and grain number per panicle. This study suggests that canopy temperature can be a convenient and accurate indicator of rice growth and yield prediction.展开更多
Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compa...Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compared based on field re- search. The results showed that smashing ridge tillage was beneficial to the tillering growth of rice plants in the the middle and later periods of tillering; under the tillage mode, the white root was more, the vigour was strong during the whole growing period, the SPAD was extremely significantly higher than that of conventional tillage, the net photosynthetic rate of the leaves was high and held green long, which were beneficial to the production and accumulation of photoassimilates; during mature pe- riod, the dry matter accumulation of the overground part under smashing ridge tillage was significantly higher than that of conventional tillage, and the number of productive ears under smashing ridge tillage was more than that of conventional tillage by 27.6×10^4/hm2, thus, the yield-increasing effect was significant and in- creased by 20.36%.展开更多
Four sterile lines (Peiai64S, Y58S, Guangzhan 63-2S and H638S) and the restoring line R527 were used as materials. Five temperature gradients (24, 27, 30, 33 and 36 ℃ in artificial climate chamber) and the natura...Four sterile lines (Peiai64S, Y58S, Guangzhan 63-2S and H638S) and the restoring line R527 were used as materials. Five temperature gradients (24, 27, 30, 33 and 36 ℃ in artificial climate chamber) and the natural temperature (as control) were treated to the four sterile lines for 6 d in the fertility sensitive period of heading to flowering stage, respectively, to study the effects of temperature on physiological biochemical characteristics of young panicles and outcrossing characteristics. The results showed that the percentages of exerted stigma of Peiai 64S and Y58S were the highest at 27 ℃, which were 86.81% and 86.06%, respectively, while the percentages of exerted stigma of Guangzhan 63-2S and H638S were the highest at 24 ℃, which were 76.24% and 81.76%, respectively; the stigma viability of Peiai 64S, Y58S, Guangzhan 63-2S and H638S were the best at 24 ℃, which were 1.96, 2.12, 1.74 and 1.94, respectively; the outcrossing rates of Peiai 64S, Guangzhan 63-2S and H638S were the highest at 24 ℃, which were 58.87%, 54.22% and 50.50%, respectively, while the outcrossing rate of Y58S was the highest at 27 ℃, which was 58.96%; and the contents of peroxidase (POD) of the four sterile lines increased significantly at 33 ℃ compared with the control, while the contents of malondialdehyde (MDA) and proline increased significantly at 36 ℃ compared with the control. There were differences in temperature sensitivity between the male sterile lines, and the 24 ℃ treatment during the sensitive period was the best for the fertility sensitive period of Peiai 64S, while 27 ℃ was the best temperature for Y58S, Gangzhan 63-2S and H638S.展开更多
The effects of different concentrations of NaCI (0, 0.10%, 0.25%, 0.40%, 0.55%, 0.70%) on the growth and physiological characteristics of three new varieties of Lagerstroemia indica were studied by pot experiment in...The effects of different concentrations of NaCI (0, 0.10%, 0.25%, 0.40%, 0.55%, 0.70%) on the growth and physiological characteristics of three new varieties of Lagerstroemia indica were studied by pot experiment in the plastic greenhouses. The results showed that under different NaCI concentrations, the relative height in- crement and the relative diameter increment of L. indica were restrained obviously; the contents of chlorophyll a, chlorophyll b, carotenoid and GSH decreased with in- crease of NaCI concentration; and the content of MDA increased with increase of NaCI concentration. Through the determination and comparison of physiological in- dexes, and analysis of correlativity, NaCI tolerance of the three new L. indica vari- eties ranked as L. indica 'Pink Velour'〉L. indica 'Dynamite'〉L. indica 'Red Rock- et'. This is consistent with the results of the morphological characteristics after Na- CI stress.展开更多
Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling st...Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling stage, induces a significant loss in yield and results in poor grain quality. Stress caused by low light often creates severe meteorological disasters in some rice-growing regions worldwide. This review was based on our previous research and related research regarding the effects of low light on rice growth, yield and quality as well as the formation of grain, and mainly reviewed the physiological metabolism of rice plants, including characteristics of photosynthesis, activities of antioxidant enzymes in rice leaves and key enzymes involved in starch synthesis in grains, as well as the translocations of carbohydrate and nitrogen. These characteristics include various grain yield and rice quality components (milling and appearance as well as cooking, eating and nutritional qualities) under different rates of shading imposed at the vegetative or reproductive stages of rice plants. Furthermore, we discussed why grain yield and quality are reduced under the low light environment. Next, we summarized the need for future research that emphasizes methods can effectively improve rice grain yield and quality under low light stress. These research findings can provide a beneficial reference for rice cultivation management and breeding program in low light environments.展开更多
[Objective] This study aimed to investigate the effects of phosphine on germination and physiological characteristics of rice seeds. [Method] Simulation envi- ronments were conducted to study the effects of high-level...[Objective] This study aimed to investigate the effects of phosphine on germination and physiological characteristics of rice seeds. [Method] Simulation envi- ronments were conducted to study the effects of high-level phosphine on germination status and physiological characteristics of rice seeds and explore the early environ- mental and ecological effects of phosphine on rice growth in phosphorus cycle of paddy field. [Result] Experimental results showed that the increase of phosphine con- centration in the environment resulted in the decrease of germination rate and ger- mination potential by 11.11% and 19.71%, respectively. In addition, the activities of catalase (CAT) and peroxidase (POD) were reduced to 94.35% and 92.61%, respec- tively; the content of malondialdehyde (MDA) was maximally increased by 29.11%, indicating that both germination potential and growth condition of rice seeds were in- hibited under conditions of high-level phosphine. [Conclusion] This study provided theoretical basis for investigating the effects of phosphine on germination of rice seeds under natural environment.展开更多
Experiments were conducted to evaluate the physiological and the biochemical characteristics of waxy wheat seeds under accelerated aging conditions. Five waxy wheat lines, which were Waxy 1, Waxy 4, Waxy 8, Waxy 9, an...Experiments were conducted to evaluate the physiological and the biochemical characteristics of waxy wheat seeds under accelerated aging conditions. Five waxy wheat lines, which were Waxy 1, Waxy 4, Waxy 8, Waxy 9, and Waxy 15; and five non-waxy wheat lines: S-39, 04J89, Jan-81, III42-4, and II110 were studied. The seeds were subjected to accelerated aging at 40℃, 45℃, 50℃, 55℃, and 60℃, and 90% relative humidity for 0, 2, 4, 6, and 8 days, respectively. The results showed a gradual increase in conductivity and decrease in germination rate during accelerated aging. SOD, POD and CAT activities increased at lowgrade treatment, but decreased at severe treatment. On the other hand, the soluble protein content decreased at 45 ℃, but successively increased, then decreased 50℃. From the above study, it showed that 90% RH at 55℃ was the best accelerated aging condition for optimum efficiency in a shorter period.展开更多
The purpose of this article is to study the effects of different water elevations of non-pressure subirrigation on some indexes of tomato, including soil water status around crop rootzone, morphological indexes, physi...The purpose of this article is to study the effects of different water elevations of non-pressure subirrigation on some indexes of tomato, including soil water status around crop rootzone, morphological indexes, physiological indexes, photosynthetic indexes, yield, quality, and water use efficiency. With the tomato materials of Dongsheng 1, the irrigation experiment was carried out in the greenhouse, and significance analysis was done on the experiment data through the software of DPS. The results showed that different water elevations, had significant influence on the growth, yield, and quality of tomato. The yield of the 6-cm treatment was the highest, the 3-cm treatment was inferior to the 6-cm treatment, and the 0-cm treatment was the lowest. However, the WUE was 0 cm 〉 3 cm 〉 6 cm. The sugar/acid and soluble protein was the highest under the 0-cm treatment, and the content of ascorbic acid did not decrease considerably. When compared to the 0-cm treatment, the ascorbic acid content of 6-cm and 3-cm treatment increased by 19.2 and 6.8%, respectively. These irrigation methods can satisfy the requirements of tomato growth; different water elevations have different influences on the tomato soil water status around crop rootzone, the physiological characteristics, and yield. It also harmonized the percentage between sugar and acid, increased the content of soluble protein and ascorbic acid, and made tomato more delicious. The irrigation methods can improve the quality of tomato by water control, which is worth promoting in the agricultural production.展开更多
Numerous growth and physiological variables of 3-week-old Populus simonii × P.nigra seedlings were assessed after treatment with either nitrate nitrogen(NO_(3)^(−)--N)(0.1,0.5,1,5,or 10 mmol·L^(−1)) or ammon...Numerous growth and physiological variables of 3-week-old Populus simonii × P.nigra seedlings were assessed after treatment with either nitrate nitrogen(NO_(3)^(−)--N)(0.1,0.5,1,5,or 10 mmol·L^(−1)) or ammonium nitrogen(NH_(4)^(+)+-N)(0.1,0.5,1,5,or 10 mmol·L^(−1)) to determine the best nitrogen form and concentration to optimize growth,biomass allocation,pigment content,and photosynthetic capacity.The results of combining membership function and an evaluation index suggested that,5 mmol·L^(−1) nitrogen,regardless of the form,yielded the highest comprehensive evaluation index and good growth.In addition,a Pearson correlation analysis and network visualization revealed that the total mass,shoot mass,root mass,leaf dry mass,plant height,leaf area,chlorophyll a and total chlorophyll had a physiological index connectivity degree≥15 for both nitrogen forms.Net photosynthetic rate,stomatal conductance,transpiration rate,maximum photochemical efficiency of PSII,total nitrogen content,ground diameter,chlorophyll b,and carotenoid were unique indices for evaluating NH_(4)^(+)+-N-based nutrition,which could provide a theoretical basis for evaluating the effects of nitrogen fertilizer on seedlings,cultivation periods,and stress tolerance in P.simonii× P.nigra.展开更多
The contents of chlorophyll, soluble sugars, soluble proteins and thiobarbitudc acid reaction substance (TBARS), chlorophyll fluorescence parameters, net photosynthetic rate as well as the activities of superoxide d...The contents of chlorophyll, soluble sugars, soluble proteins and thiobarbitudc acid reaction substance (TBARS), chlorophyll fluorescence parameters, net photosynthetic rate as well as the activities of superoxide dismutase (SOD) and peroxidase (POD) of flag leaves at the late growth stages were studied by using C Liangyou series of hybrid rice combinitions as material and Shanyou 63 as control. The C Liangyou series of hybrid rice combinations used in the experiment included C Liangyou 396, C Liangyou 87, C Liangyou 755 and C Liangyou 34, which all used C815S as male sterile line. The contents of chlorophyll, soluble sugars and soluble proteins in flag leaves of the C Liangyou series combinations at the late growth stages were higher than those of the control, whereas the TBARS content was lower than that of the control. The activities of SOD and POD were significantly higher than those of the control on the 7th day after heading, and then decreased slowly. ~bps, value and qp value of flag leaves decreased at the late growth stages, and these two parameters in flag leaves of the C Liangyou series combinations were higher than those of the control, while the qN value increased at the late growth stages and was lower than that of the control. The net photosynthetic rate of flag leaves at the late growth stage was higher compared with the control. These results suggest that slow senescence and strong photosynthetic capability in flag leaves at the late growth stages are the physiological basis of the C Liangyou series combinations.展开更多
In order to identify the resistance of peanut varieties against scab disease, the changes of physiological characteristics and yield in two peanut varieties 'Heyou 13' and 'Quanhual0' with different resistance eff...In order to identify the resistance of peanut varieties against scab disease, the changes of physiological characteristics and yield in two peanut varieties 'Heyou 13' and 'Quanhual0' with different resistance effected by peanut scab were stud- ied in field experiment by spray. The results showed the soluble sugar increased firstly and then decreased both in the resistant and susceptible peanuts after inocu- lation. Compared with the control, the soluble sugar of resistant peanut was higher, and that of the susceptible peanut was lower, which implied that the peanut resis- tance to scab was positive correlated with soluble sugar content. The soluble pro- tein content in leaves of resistant and susceptible peanut varieties after inoculation was higher than that of the control. The peak of soluble protein content appeared earlier in the susceptible peanut than in the resistant peanut, which indicated that the susceptible peanut were more sensitive to the pathogen than the resistant peanut. The leaf SOD activity increased firstly and then decreased both in resistant and susceptible varieties, while the decrease in the resistant variety were lower than in the susceptible variety. With the growth process, the CAT and POD activities first decreased, then increased, and again decreased. Compared with the corresponding control, the resistant variety had relatively higher CAT and POD activities than the susceptible variety, which illustrated that the protective enzymes played important roles in resistance mechanism to scab. The MDA content of the two peanut vari- eties after inoculation increased, indicating that plasma membranes were subjected to different degrees of damage. The yield of resistant and susceptible varieties after inoculation reduced, while the yield of the susceptible peanut of 'Quanhua 10' reduced greater.展开更多
As shown by the changes in physiological characteristics and seed vigor of three Medicago ruthenica samples during artificial aging process, the germination potential, germination rate, germination index, vigor index ...As shown by the changes in physiological characteristics and seed vigor of three Medicago ruthenica samples during artificial aging process, the germination potential, germination rate, germination index, vigor index and simple vigor index declined with the extension of aging time on the whole. After artificial aging for 6 min, the vigor was higher than that of the control. The conductivity, malondialdehyde content and soluble polysaccharide content of seed leachate increased with the aging time and negatively correlated ( P 〈 0.05) with the seed vigor indicators. The physiological indicators were very significantly correlated (P 〈 0.01 ) with the vigor indicators in the Medicago ruthenica sample from Dorbod Qi, UIanqab City(China).展开更多
To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxi...To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, soluble protein content, and chlorophyll content) of Typha orientalis exposed to different concentrations of AgNPs solutions (0, 0.1, 1, 20 and 40 mg/L) were explored. Meantime, the accumulation of silver content in these plants was revealed. The results show that under low concentrations of AgNPs, the SOD and POD activities in the leaves of Typha orientalis are strengthened to different degrees. However, high concentrations of AgNPs inhibit the activities of SOD and POD. Under the stress of different concentrations of AgNPs, the CAT activities are inhibited initially and later recovered to some extent. Under the stress of low concentrations of AgNPs, the soluble protein content in the leaves of Typha orientalis increases significantly, but decreases more significantly with increasing concentrations of AgNPs. Low concentrations of AgNPs promote chlorophyll synthesis in the leaves of Typha orientalis , but the chlorophyll content subsequently falls to pre-stress levels. In contrast, high concentrations of AgNPs cause a certain inhibition to generate chlorophyll. Meanwhile, the results show that the silver concentrations of plant tissues increase with the exposure of concentrations of AgNPs and they have a positive relationship with the exposure of concentrations of AgNPs.展开更多
[Objective] This study aimed to investigate the effects of traffic stress on the physiological characteristics of Agrostis stolonifera under high temperature and humidity in summer. [Method] Total 3 creeping bentgrass...[Objective] This study aimed to investigate the effects of traffic stress on the physiological characteristics of Agrostis stolonifera under high temperature and humidity in summer. [Method] Total 3 creeping bentgrass varieties (lines) were se- lected as materials, and their physiological characteristics were determined and ana- lyzed, including leaf relative water content, relative plasma membrane permeability, peroxidase activity, superoxide dismutase (SOD) activity, catalase activity, proline content and malondialdehyde (MDA) content. [Result] Under the traffic stress, the leaf relative water content, relative plasma membrane permeability, MDA content, proline content and protection enzymes activities showed significant differences among different traffic intensities and tested varieties (P〈0.05). The variations of various physiological indexes of Yuexuan 1 were smallest, and it showed relatively strong traffic tolerance. [Conclusion] Considering the traffic tolerance, the 3 tested creeping bentgrass varieties ranked as Yuexuan 1〉New Strain No.2〉Penncross.展开更多
In order to study the effects of seed soaking with Paclobutrazol( PP333) on the tillering and physiological characteristics of sugarcane seedlings,sugar cane variety ROC22 was used as experimental material. The effect...In order to study the effects of seed soaking with Paclobutrazol( PP333) on the tillering and physiological characteristics of sugarcane seedlings,sugar cane variety ROC22 was used as experimental material. The effects of seed soaking with different concentrations of PP333 were studied. The tiller number and growth of sugarcane were surveyed at the 6-leaf stage,the physiological indicators such as chlorophyll content,soluble protein content,proline content and peroxidase activity were measured at the 2-leaf,4-leaf,and 6-leaf stages. The results showed that the seed soaking with PP333 can effectively improve the tillering of sugarcane seedlings. The suitable concentration for the tillering of sugarcane and the growth and development of sugarcane was of 50 mg/L; the seed soaking with PP333 significantly increased the chlorophyll,soluble protein,proline,and peroxidase activity of leaves of sugarcane seedlings; the content of chlorophyll and soluble protein in leaves of sugarcane seedlings treated with 90 mg/L PP333 was the highest,and the proline content and peroxidase activity of sugarcane treated with 50 mg/L PP333 were the highest.展开更多
基金funded in part by the National Natural Science Foundation of China under Grant No.61872038in part by the Fundamental Research Funds for the Central Universities under Grant No.FRF-GF-20-15B.
文摘Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.
基金Supported by National Algae System(CARS-50)Modern Agricultural(Laver)Industrial Technology System of Jiangsu Province(JATS[2023]381)Research Project of Nantong City(MS22022065).
文摘[Objectives]To study the differences of growth rate,morphology,ultrastructure,pigment content and antioxidant enzyme activity of free-living conchocelis of cultivated type of Neopyropia yezoensis under different light qualities(white,red,blue,and green light).[Methods]The study was carried out through light quality design and culture,growth rate determination,microstructure and ultrastructure observation,chlorophyll a content and carotenoid content determination,phycobiliprotein content determination,malondialdehyde(MDA)content determination,superoxide dismutase(SOD)activity determination.[Results]After 21 d of culture,the specific growth rate(SGR)and chlorophyll a content of free-living conchocelis of N.yezoensis were significantly increased by white light(WL),followed by red light(RL)and green light(GL),and they were the lowest under blue light(BL).Compared with the WL group,the BL group had the highest content of phycoerythrin(PE),and the RL and GL groups had the highest content of phycocyanin(PC).The algal body of WL group was normal black brown,and the cell wall was the thickest.In RL and GL groups,the algal bodies were green,and their diameters and cell wall thicknesses were similar to those in WL group.In BL group,the algal body was bright red,the diameter was the smallest,the cell wall was the thinnest,and the ultrastructure showed that the number of plastoglobulus on the thylakoid was the largest.After BL irradiation,the highest MDA content and the lowest SOD activity were observed.The results revealed that WL is the most beneficial to the growth of free-living conchocelis,followed by RL and GL,while BL has adverse effects.[Conclusions]This study explored the most suitable light quality conditions for the propagation of free-living conchocelis.It is expected to provide germplasm guarantee for the production and seedling of N.yezoensis.
基金Supported by Hunan Provincial Postgraduate Education Innovation Project and Professional Ability Improvement Project (CX20211220)Scientific Research Project of Hunan Provincial Department of Education (20A278)+1 种基金Undergraduate Innovation and Entrepreneurship Training Program of Hunan Province (XJT[2021]197,No. 3705)School-level Postgraduate Innovation Experiment Project (24520012)。
文摘[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas.
文摘A study was conducted to determine the physiological characteristics changes of Aesculus chinensis seeds during natural dehydration in 2003. The results showed that A. chinensis seeds were recalcitrant with being highly desiccation-sensitive. The seed moisture content of fresh fruits was higher than 60%. When the seeds were naturally dried for 30 days, their moisture content declined to 30.2% and their viability was completely lost. The seed germination percentage had a small increase at the beginning of desiccation and then decreased rapidly. The relative electrical conductivity of the A. chinensis seeds increased along with a decrease in seed moisture content. However, there was an abnormal increase in relative electrical conductivity when the seed moisture content was between 53.7% and 50.9%. Superoxide dismutase (SOD) activity decreased rapidly in the period of desiccation except for an abnormality when the seed moisture content was between 53.7% and 50.9%. Malondialdehyde (MDA) content increased slowly at the early stage of desiccation and then rose rapidly after the moisture content was below 50.9%. The soluble sugar content in seeds slowly increased with the increasing period of desiccation. The seed germination percentage was at the high level when seed moisture content was in range of 47%- 60%, which suggests that this was the optimum moisture content for maintaining A. chinensis seed viability.
文摘[Objective]The aim was to study the effects of sunflower artificial aging on seed vigor and physiological characteristics.[Method] The varieties of seed germination capacity,vigor of germination,germination index,vigor index,peroxidase(POD) activity,superoxide dismutase(SOD) activity and malondialdehyde(MDA) content for four sunflower germplasms such as'SunM20','Deep Purple Minle','Da San Kui Hua 4'and'Ji Kui 24'were studied under high temperature and high humidity conditions(100% RH,45 ℃) for different days(0 d,2 d,4 d,6 d,8 d,10 d).[Result]The result showed that the germination capacity,vigor of germination,germination index,vigor index,POD activity,SOD activity declined gradually with the increase of seed aging days,whereas MDA content enhanced by degrees;The diggerences of resistance to artifical aging existed among the four accessions,'SunM20'was the most resistant one,and exhibited the strongest seed vigor,highest activities of two protective enzyme(POD,SOD) and lowest content of MDA at the uniform condition,moreover,the seed vigor and protective enzyme activities of'SunM20'changed slowest among the four materials during the aging process.[Conclusion]The distinct reduction of POD,SOD activities maybe the main reasons for the decrease of sunflower seed vigor at the artificial aging,and the gradual accumulation of a few MDA accelerated seeds aging.
基金supported by the National Key Research and Development Program of China(2022YFD1500404)the National Natural Science Foundation of China(31801310)+1 种基金the Natural Science Projects of Universities in Jiangsu Province,China(21KJA210001)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘Canopy temperature strongly influences crop yield formation and is closely related to plant physiological traits.However, the effects of nitrogen treatment on canopy temperature and rice growth have yet to be comprehensively examined. We conducted a two-year field experiment with three rice varieties(HD-5, NJ-9108, and YJ-805) and three nitrogen treatments(zero-N control(CK), 200 kg ha~(–1)(MN), and 300 kg ha~(–1)(HN)). We measured canopy temperature using a drone equipped with a high-precision camera at the six stages of the growth period. Generally,canopy temperature was significantly higher for CK than for MN and HN during the tillering, jointing, booting, and heading stages. The temperature was not significantly different among the nitrogen treatments between the milky and waxy stages. The canopy temperature of different rice varieties was found to follow the order: HD-5>NJ-9108>YJ-805, but the difference was not significant. The canopy temperature of rice was mainly related to plant traits, such as shoot fresh weight(correlation coefficient r=–0.895), plant water content(–0.912), net photosynthesis(–0.84), stomatal conductance(–0.91), transpiration rate(–0.90), and leaf stomatal area(–0.83). A structural equation model(SEM) showed that nitrogen fertilizer was an important factor affecting the rice canopy temperature.Our study revealed:(1) A suite of plant traits was associated with the nitrogen effects on canopy temperature,(2) the heading stage was the best time to observe rice canopy temperature, and(3) at that stage, canopy temperature was negatively correlated with rice yield, panicle number, and grain number per panicle. This study suggests that canopy temperature can be a convenient and accurate indicator of rice growth and yield prediction.
基金Supported by the Special Project of Basic Scientific Research of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2013YM50)the Special Project of Basic Scientific Research of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2013YM43)the Planned Project of Guangxi Scientific Research and Technological Development(Gui Ke Neng 1346007-9)~~
文摘Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compared based on field re- search. The results showed that smashing ridge tillage was beneficial to the tillering growth of rice plants in the the middle and later periods of tillering; under the tillage mode, the white root was more, the vigour was strong during the whole growing period, the SPAD was extremely significantly higher than that of conventional tillage, the net photosynthetic rate of the leaves was high and held green long, which were beneficial to the production and accumulation of photoassimilates; during mature pe- riod, the dry matter accumulation of the overground part under smashing ridge tillage was significantly higher than that of conventional tillage, and the number of productive ears under smashing ridge tillage was more than that of conventional tillage by 27.6×10^4/hm2, thus, the yield-increasing effect was significant and in- creased by 20.36%.
基金Supported by the National Science-technology Support Plan Project(2014BAD06B07)the Agricultural Special Fund of the Department of Finance of Hunan Provincethe Innovation Project of Hunan Province(XCX15148)~~
文摘Four sterile lines (Peiai64S, Y58S, Guangzhan 63-2S and H638S) and the restoring line R527 were used as materials. Five temperature gradients (24, 27, 30, 33 and 36 ℃ in artificial climate chamber) and the natural temperature (as control) were treated to the four sterile lines for 6 d in the fertility sensitive period of heading to flowering stage, respectively, to study the effects of temperature on physiological biochemical characteristics of young panicles and outcrossing characteristics. The results showed that the percentages of exerted stigma of Peiai 64S and Y58S were the highest at 27 ℃, which were 86.81% and 86.06%, respectively, while the percentages of exerted stigma of Guangzhan 63-2S and H638S were the highest at 24 ℃, which were 76.24% and 81.76%, respectively; the stigma viability of Peiai 64S, Y58S, Guangzhan 63-2S and H638S were the best at 24 ℃, which were 1.96, 2.12, 1.74 and 1.94, respectively; the outcrossing rates of Peiai 64S, Guangzhan 63-2S and H638S were the highest at 24 ℃, which were 58.87%, 54.22% and 50.50%, respectively, while the outcrossing rate of Y58S was the highest at 27 ℃, which was 58.96%; and the contents of peroxidase (POD) of the four sterile lines increased significantly at 33 ℃ compared with the control, while the contents of malondialdehyde (MDA) and proline increased significantly at 36 ℃ compared with the control. There were differences in temperature sensitivity between the male sterile lines, and the 24 ℃ treatment during the sensitive period was the best for the fertility sensitive period of Peiai 64S, while 27 ℃ was the best temperature for Y58S, Gangzhan 63-2S and H638S.
文摘The effects of different concentrations of NaCI (0, 0.10%, 0.25%, 0.40%, 0.55%, 0.70%) on the growth and physiological characteristics of three new varieties of Lagerstroemia indica were studied by pot experiment in the plastic greenhouses. The results showed that under different NaCI concentrations, the relative height in- crement and the relative diameter increment of L. indica were restrained obviously; the contents of chlorophyll a, chlorophyll b, carotenoid and GSH decreased with in- crease of NaCI concentration; and the content of MDA increased with increase of NaCI concentration. Through the determination and comparison of physiological in- dexes, and analysis of correlativity, NaCI tolerance of the three new L. indica vari- eties ranked as L. indica 'Pink Velour'〉L. indica 'Dynamite'〉L. indica 'Red Rock- et'. This is consistent with the results of the morphological characteristics after Na- CI stress.
文摘Light intensity is one of the most important environmental factors that determine the basic characteristics of rice development. However, continuously cloudy weather or rainfall, especially during the grain-filling stage, induces a significant loss in yield and results in poor grain quality. Stress caused by low light often creates severe meteorological disasters in some rice-growing regions worldwide. This review was based on our previous research and related research regarding the effects of low light on rice growth, yield and quality as well as the formation of grain, and mainly reviewed the physiological metabolism of rice plants, including characteristics of photosynthesis, activities of antioxidant enzymes in rice leaves and key enzymes involved in starch synthesis in grains, as well as the translocations of carbohydrate and nitrogen. These characteristics include various grain yield and rice quality components (milling and appearance as well as cooking, eating and nutritional qualities) under different rates of shading imposed at the vegetative or reproductive stages of rice plants. Furthermore, we discussed why grain yield and quality are reduced under the low light environment. Next, we summarized the need for future research that emphasizes methods can effectively improve rice grain yield and quality under low light stress. These research findings can provide a beneficial reference for rice cultivation management and breeding program in low light environments.
基金Supported by National Natural Science Foundation of China(41071305)~~
文摘[Objective] This study aimed to investigate the effects of phosphine on germination and physiological characteristics of rice seeds. [Method] Simulation envi- ronments were conducted to study the effects of high-level phosphine on germination status and physiological characteristics of rice seeds and explore the early environ- mental and ecological effects of phosphine on rice growth in phosphorus cycle of paddy field. [Result] Experimental results showed that the increase of phosphine con- centration in the environment resulted in the decrease of germination rate and ger- mination potential by 11.11% and 19.71%, respectively. In addition, the activities of catalase (CAT) and peroxidase (POD) were reduced to 94.35% and 92.61%, respec- tively; the content of malondialdehyde (MDA) was maximally increased by 29.11%, indicating that both germination potential and growth condition of rice seeds were in- hibited under conditions of high-level phosphine. [Conclusion] This study provided theoretical basis for investigating the effects of phosphine on germination of rice seeds under natural environment.
基金Supported by National Natural Science Foundation of China (31000712)National Natural Science Fund (31000712)Yunnan Provincial Education Department Scientific Research Program (08Y0166)
文摘Experiments were conducted to evaluate the physiological and the biochemical characteristics of waxy wheat seeds under accelerated aging conditions. Five waxy wheat lines, which were Waxy 1, Waxy 4, Waxy 8, Waxy 9, and Waxy 15; and five non-waxy wheat lines: S-39, 04J89, Jan-81, III42-4, and II110 were studied. The seeds were subjected to accelerated aging at 40℃, 45℃, 50℃, 55℃, and 60℃, and 90% relative humidity for 0, 2, 4, 6, and 8 days, respectively. The results showed a gradual increase in conductivity and decrease in germination rate during accelerated aging. SOD, POD and CAT activities increased at lowgrade treatment, but decreased at severe treatment. On the other hand, the soluble protein content decreased at 45 ℃, but successively increased, then decreased 50℃. From the above study, it showed that 90% RH at 55℃ was the best accelerated aging condition for optimum efficiency in a shorter period.
基金This research was supported by the National Natural Science Foundation of China (50479051)the Agricultural Science and Technology Achievement Transformation Foundation of China (04EFN217100395)the Innovation Projects of Northwest A & F University for Graduate Students.
文摘The purpose of this article is to study the effects of different water elevations of non-pressure subirrigation on some indexes of tomato, including soil water status around crop rootzone, morphological indexes, physiological indexes, photosynthetic indexes, yield, quality, and water use efficiency. With the tomato materials of Dongsheng 1, the irrigation experiment was carried out in the greenhouse, and significance analysis was done on the experiment data through the software of DPS. The results showed that different water elevations, had significant influence on the growth, yield, and quality of tomato. The yield of the 6-cm treatment was the highest, the 3-cm treatment was inferior to the 6-cm treatment, and the 0-cm treatment was the lowest. However, the WUE was 0 cm 〉 3 cm 〉 6 cm. The sugar/acid and soluble protein was the highest under the 0-cm treatment, and the content of ascorbic acid did not decrease considerably. When compared to the 0-cm treatment, the ascorbic acid content of 6-cm and 3-cm treatment increased by 19.2 and 6.8%, respectively. These irrigation methods can satisfy the requirements of tomato growth; different water elevations have different influences on the tomato soil water status around crop rootzone, the physiological characteristics, and yield. It also harmonized the percentage between sugar and acid, increased the content of soluble protein and ascorbic acid, and made tomato more delicious. The irrigation methods can improve the quality of tomato by water control, which is worth promoting in the agricultural production.
基金This work was supported by the Science Fund Project of Heilongjiang Province of China(ZD2020C004)the Special Fund for Basic Scientifi c research operation Fee of Central University(2572019CT02)+1 种基金the Innovation Project of State Key Laboratory of Tree Genetics and Breeding(Northeast Forestry University)(2019A03)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team).
文摘Numerous growth and physiological variables of 3-week-old Populus simonii × P.nigra seedlings were assessed after treatment with either nitrate nitrogen(NO_(3)^(−)--N)(0.1,0.5,1,5,or 10 mmol·L^(−1)) or ammonium nitrogen(NH_(4)^(+)+-N)(0.1,0.5,1,5,or 10 mmol·L^(−1)) to determine the best nitrogen form and concentration to optimize growth,biomass allocation,pigment content,and photosynthetic capacity.The results of combining membership function and an evaluation index suggested that,5 mmol·L^(−1) nitrogen,regardless of the form,yielded the highest comprehensive evaluation index and good growth.In addition,a Pearson correlation analysis and network visualization revealed that the total mass,shoot mass,root mass,leaf dry mass,plant height,leaf area,chlorophyll a and total chlorophyll had a physiological index connectivity degree≥15 for both nitrogen forms.Net photosynthetic rate,stomatal conductance,transpiration rate,maximum photochemical efficiency of PSII,total nitrogen content,ground diameter,chlorophyll b,and carotenoid were unique indices for evaluating NH_(4)^(+)+-N-based nutrition,which could provide a theoretical basis for evaluating the effects of nitrogen fertilizer on seedlings,cultivation periods,and stress tolerance in P.simonii× P.nigra.
基金supported by the National High Technology Research and Development Project of China(Grant No.2006AA100101)the Agricultural Technological Results Transformation Fund,China(Grant Nos.2007GB2D200226 and 2008GB2D200227)
文摘The contents of chlorophyll, soluble sugars, soluble proteins and thiobarbitudc acid reaction substance (TBARS), chlorophyll fluorescence parameters, net photosynthetic rate as well as the activities of superoxide dismutase (SOD) and peroxidase (POD) of flag leaves at the late growth stages were studied by using C Liangyou series of hybrid rice combinitions as material and Shanyou 63 as control. The C Liangyou series of hybrid rice combinations used in the experiment included C Liangyou 396, C Liangyou 87, C Liangyou 755 and C Liangyou 34, which all used C815S as male sterile line. The contents of chlorophyll, soluble sugars and soluble proteins in flag leaves of the C Liangyou series combinations at the late growth stages were higher than those of the control, whereas the TBARS content was lower than that of the control. The activities of SOD and POD were significantly higher than those of the control on the 7th day after heading, and then decreased slowly. ~bps, value and qp value of flag leaves decreased at the late growth stages, and these two parameters in flag leaves of the C Liangyou series combinations were higher than those of the control, while the qN value increased at the late growth stages and was lower than that of the control. The net photosynthetic rate of flag leaves at the late growth stage was higher compared with the control. These results suggest that slow senescence and strong photosynthetic capability in flag leaves at the late growth stages are the physiological basis of the C Liangyou series combinations.
基金Supported by the Earmarked Fund for Modern Agroindustry Technology Research System of China(CARS-13)Key Project of Science and Technology Plan of Quanzhou(2012N76)~~
文摘In order to identify the resistance of peanut varieties against scab disease, the changes of physiological characteristics and yield in two peanut varieties 'Heyou 13' and 'Quanhual0' with different resistance effected by peanut scab were stud- ied in field experiment by spray. The results showed the soluble sugar increased firstly and then decreased both in the resistant and susceptible peanuts after inocu- lation. Compared with the control, the soluble sugar of resistant peanut was higher, and that of the susceptible peanut was lower, which implied that the peanut resis- tance to scab was positive correlated with soluble sugar content. The soluble pro- tein content in leaves of resistant and susceptible peanut varieties after inoculation was higher than that of the control. The peak of soluble protein content appeared earlier in the susceptible peanut than in the resistant peanut, which indicated that the susceptible peanut were more sensitive to the pathogen than the resistant peanut. The leaf SOD activity increased firstly and then decreased both in resistant and susceptible varieties, while the decrease in the resistant variety were lower than in the susceptible variety. With the growth process, the CAT and POD activities first decreased, then increased, and again decreased. Compared with the corresponding control, the resistant variety had relatively higher CAT and POD activities than the susceptible variety, which illustrated that the protective enzymes played important roles in resistance mechanism to scab. The MDA content of the two peanut vari- eties after inoculation increased, indicating that plasma membranes were subjected to different degrees of damage. The yield of resistant and susceptible varieties after inoculation reduced, while the yield of the susceptible peanut of 'Quanhua 10' reduced greater.
基金funded by National Key Technology R & DProgram during the 11th Five-Year Plan Period (2008BADB3B01)Crops Germplasm Resource Conservation Project of Ministry of Agriculture (NB08-2130135-43)
文摘As shown by the changes in physiological characteristics and seed vigor of three Medicago ruthenica samples during artificial aging process, the germination potential, germination rate, germination index, vigor index and simple vigor index declined with the extension of aging time on the whole. After artificial aging for 6 min, the vigor was higher than that of the control. The conductivity, malondialdehyde content and soluble polysaccharide content of seed leachate increased with the aging time and negatively correlated ( P 〈 0.05) with the seed vigor indicators. The physiological indicators were very significantly correlated (P 〈 0.01 ) with the vigor indicators in the Medicago ruthenica sample from Dorbod Qi, UIanqab City(China).
基金The National Natural Science Foundation of China(No.51479034,5151101102)
文摘To probe the influence and the adverse-resistance characteristics of wetland plants in presence of silver nanoparticles (AgNPs), the changes in the physiological and biochemical characteristics (including the superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase (POD) activity, soluble protein content, and chlorophyll content) of Typha orientalis exposed to different concentrations of AgNPs solutions (0, 0.1, 1, 20 and 40 mg/L) were explored. Meantime, the accumulation of silver content in these plants was revealed. The results show that under low concentrations of AgNPs, the SOD and POD activities in the leaves of Typha orientalis are strengthened to different degrees. However, high concentrations of AgNPs inhibit the activities of SOD and POD. Under the stress of different concentrations of AgNPs, the CAT activities are inhibited initially and later recovered to some extent. Under the stress of low concentrations of AgNPs, the soluble protein content in the leaves of Typha orientalis increases significantly, but decreases more significantly with increasing concentrations of AgNPs. Low concentrations of AgNPs promote chlorophyll synthesis in the leaves of Typha orientalis , but the chlorophyll content subsequently falls to pre-stress levels. In contrast, high concentrations of AgNPs cause a certain inhibition to generate chlorophyll. Meanwhile, the results show that the silver concentrations of plant tissues increase with the exposure of concentrations of AgNPs and they have a positive relationship with the exposure of concentrations of AgNPs.
文摘[Objective] This study aimed to investigate the effects of traffic stress on the physiological characteristics of Agrostis stolonifera under high temperature and humidity in summer. [Method] Total 3 creeping bentgrass varieties (lines) were se- lected as materials, and their physiological characteristics were determined and ana- lyzed, including leaf relative water content, relative plasma membrane permeability, peroxidase activity, superoxide dismutase (SOD) activity, catalase activity, proline content and malondialdehyde (MDA) content. [Result] Under the traffic stress, the leaf relative water content, relative plasma membrane permeability, MDA content, proline content and protection enzymes activities showed significant differences among different traffic intensities and tested varieties (P〈0.05). The variations of various physiological indexes of Yuexuan 1 were smallest, and it showed relatively strong traffic tolerance. [Conclusion] Considering the traffic tolerance, the 3 tested creeping bentgrass varieties ranked as Yuexuan 1〉New Strain No.2〉Penncross.
基金Supported by Project of National Natural Science Foundation(31501362)Natural Science Foundation Project of Guangxi(2014GXNSFBA118289,2014GXNSFAA118090)
文摘In order to study the effects of seed soaking with Paclobutrazol( PP333) on the tillering and physiological characteristics of sugarcane seedlings,sugar cane variety ROC22 was used as experimental material. The effects of seed soaking with different concentrations of PP333 were studied. The tiller number and growth of sugarcane were surveyed at the 6-leaf stage,the physiological indicators such as chlorophyll content,soluble protein content,proline content and peroxidase activity were measured at the 2-leaf,4-leaf,and 6-leaf stages. The results showed that the seed soaking with PP333 can effectively improve the tillering of sugarcane seedlings. The suitable concentration for the tillering of sugarcane and the growth and development of sugarcane was of 50 mg/L; the seed soaking with PP333 significantly increased the chlorophyll,soluble protein,proline,and peroxidase activity of leaves of sugarcane seedlings; the content of chlorophyll and soluble protein in leaves of sugarcane seedlings treated with 90 mg/L PP333 was the highest,and the proline content and peroxidase activity of sugarcane treated with 50 mg/L PP333 were the highest.