期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transplantation of human placental chorionic plate-derived mesenchymal stem cells for repair of neurological damage in neonatal hypoxic-ischemic encephalopathy
1
作者 Lulu Xue Ruolan Du +8 位作者 Ning Bi Qiuxia Xiao Yifei Sun Ruize Niu Yaxin Tan Li Chen Jia Liu Tinghua Wang Liulin Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2027-2035,共9页
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische... Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function. 展开更多
关键词 behavioral evaluations gene knockout human neuroblastoma cells(SH-SY5Y) human placental chorionic derived mesenchymal stem cells INTERLEUKIN-3 neonatal hypoxic-ischemic encephalopathy nerve injury oxygen-glucose deprivation protein chip small interfering RNA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部