Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the ...Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.展开更多
Drilling,seismic and logging data were used to evaluate the hydrocarbon accumulation conditions of the mound-shoal complexes in the platform margin of the fourth member of Sinian Dengying Formation in the east side of...Drilling,seismic and logging data were used to evaluate the hydrocarbon accumulation conditions of the mound-shoal complexes in the platform margin of the fourth member of Sinian Dengying Formation in the east side of the Mianzhu-Changning intracratonic rift in the Sichuan Basin.The four understandings are:(1)The platform margin belt of the Deng 4 Member can be divided into three sections,northern,middle and southern;the middle section is at the core of the Gaoshiti-Moxi paleouplift and the structural high now,while the southern and northern sections are at the slope of the paleouplift and the structural lows now;the three sections have similar development characteristics and reservoir features of platform margin mound-shoal complex.(2)In the margin of the east side of the rift,there are several faults nearly perpendicular to the platform margin belt,the faults divide the platform margin belt into rugged paleo-landform,and the high part developed platform margin mound-shoal complexes and the reservoirs are good in physical properties,while the low part developed inter-beach depression and no mound-shoal complexes,where the reservoirs are poor in physical properties.(3)The six groups of faults nearly perpendicular to the platform margin belt divide the platform margin belt into seven large mound-shoal complexes which have similar hydrocarbon accumulation conditions and accumulation evolution process and are rich in petroleum.(4)The inter shoal depressions between the mound-shoal complexes are characterized by tighter lithology,which can block the updip direction of the mounds and shoals at the lower part of the slope of the paleouplift and are favorable for the later preservation of mound-shoal gas reservoirs.This has been proved by Well Jiaotan 1 and Heshen 2 drilled successfully.The mound-shoal complexes on the platform margin of the structural slope area have a good exploration prospect.展开更多
As a potential oil and gas reservoir, reef complexes have been a research focus from petroleum geologists for a long time. There are favorable conditions for the development of reef complexes in the South China Sea; h...As a potential oil and gas reservoir, reef complexes have been a research focus from petroleum geologists for a long time. There are favorable conditions for the development of reef complexes in the South China Sea; however, their internal structures, evolution and distribution are still poorly understood. Based on 2D and 3D seismic data, the internal structures and evolution patterns of the reef complexes on the carbonate platform margin in the deep water areas over the western South China Sea were studied in detail. The result shows that two types of reef complexes, i.e., fault controlling platform margin reef complexes and ramp reef complexes have been developed in the study area. The reef complexes have independent or continuous mound or lenticular seismic reflections, with three internal structures (i.e., aggrading, prograding and retrograding structures). There are different growth rates during the evolution of the reef complexes, resulting in the formation of catch-up reefs, keep-up reefs and quick step reefs. The study also reveals that different platform margin reef complexes have different internal structures and distributions, because of the different platform types. These results may be applied to the exploration and prediction of carbonate platform margin reef complexes in other areas that are similar to the study area.展开更多
Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-An...Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-Anyue Rift and its periphery were analyzed. Four types of platform margins are developed in the Dengying Formation, i.e., single-stage fault-controlled platform margin, multi-stage fault-controlled platform margin, gentle slope platform margin, and overlapping platform margin. In the Gaoshiti West-Weiyuan East area, single-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in nearly NEE direction and are shielded by faults and mudstones, forming fault-controlled–lithologic traps. In the Lezhi-Penglai area, independent and multi-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in NE direction and are controlled by synsedimentary faults;the mound-shoal complexes are aggraded and built on the hanging walls of the faults, and they are shielded by tight intertidal belts and the Lower Cambrian source rocks in multiple directions, forming fault-controlled–lithologic and other composite traps. In the Weiyuan-Ziyang area, gentle slope platform margins are developed in the Deng 2 Member, which trend in NW direction;the mound-shoal complexes are mostly thin interbeds as continuous bands and shielded by tight intertidal belts in the updip direction, forming lithologic traps. In the Gaoshiti-Moxi-Yanting area, overlapping platform margins are developed in the Deng 2 and Deng 4 members;the mound-shoal complexes are aggraded and overlaid to create platform margin buildup with a huge thickness and sealed by tight intertidal belts and the Lower Cambrian mudstones in the updip direction, forming large-scale lithologic traps on the north slope of the Central Sichuan Paleouplift. To summarize, the mound-shoal complexes on the platform margins in the Dengying Formation in the Penglai-Zhongjiang area, Moxi North-Yanting area and Weiyuan-Ziyang area are large in scale, with estimated resources of 1.58×1012 m3, and they will be the key targets for the future exploration of the Dengying Formation in the Sichuan Basin.展开更多
Through the analysis of logging,field outcrops,cores and geochemical data,and based on the study of the relationships between sea level changes,sequence filling,paleo-geomorphy and lithofacies,the sequence lithofacies...Through the analysis of logging,field outcrops,cores and geochemical data,and based on the study of the relationships between sea level changes,sequence filling,paleo-geomorphy and lithofacies,the sequence lithofacies paleo-geography and evolution process of the Lower Permian Liangshan-Qixia Formation(Qixia Stage for short)in Sichuan Basin and its surrounding areas are restored.The Qixia Stage can be divided into three third-order sequences,in which SQ0,SQ1 and SQ2 are developed in the depression area,and SQ1 and SQ2 are only developed in other areas.The paleo-geomorphy reflected by the thickness of each sequence indicates that before the deposition of the Qixia Stage in the Early Permian,the areas surrounding the Sichuan Basin are characterized by“four uplifts and four depressions”,namely,four paleo-uplifts/paleo-lands of Kangdian,Hannan,Shennongjia and Xuefeng Mountain,and four depressions of Chengdu-Mianyang,Kangdian front,Jiangkou and Yichang;while the interior of the basin is characterized by“secondary uplifts,secondary depressions and alternating convex-concave”.SQ2 is the main shoal forming period of the Qixia Formation,and the high-energy mound shoal facies mainly developed in the highs of sedimentary paleo-geomorphy and the relative slope break zones.The distribution of dolomitic reservoirs(dolomite,limy dolomite and dolomitic limestone)has a good correlation with the sedimentary geomorphic highs and slope break zones.The favorable mound-shoal and dolomitic reservoirs are distributed around depressions at platform-margin and along highs and around sags in the basin.It is pointed out that the platform-margin area in western Sichuan Basin is still the key area for exploration at present;while areas around Chengdu-Mianyang depression and Guangwang secondary depression inside the platform and areas around sags in central Sichuan-southern Sichuan are favorable exploration areas for dolomitic reservoirs of the Qixia Formation in the next step.展开更多
基金Supported by the National Natural Science Foundation of China(41772103)China National Science and Technology Major Project(2016ZX05007-002)Petrochina Science and Technology Major Project(2016E-0204)。
文摘Based on the observation of outcrops and cores,thin section identification,restoration of paleogeomorphology by residual thickness method,fine description of seismic facies,etc.,the coupling relationships between the development patterns of various types of Cambrian platform margin mound-shoal complexes and paleogeomorphology in the Gucheng area of Tarim Basin have been examined.The Cambrian platform margin mound-shoal complex is divided into mound base,mound core,mound front,mound back and mound flat microfacies,which are composed of dolomites of seven textures with facies indication.The different paleogeomorphology before the deposition of mound-shoal complex in each period was reconstructed,and three types of mound-shoal complex sedimentary models corresponding to the paleogeomorphologies of four stages were established:namely,the first stage of gentle slope symmetric accretion type,the second stage of steep slope asymmetric accretion type and the third and fourth stages of steep slope asymmetric progradation type.Their microfacies are respectively characterized by-mound base-mound back+(small)mound core+mound front-mound flat"symmetric vertical accretion structure,"mound base-(large)mound core+mound front-mound flat"asymmetric vertical accretion structure,"mound base-(small)mound core+mound front-mound flat"asymmetric lateral progradation structure.With most developed favorable reservoir facies belt,the steep slope asymmetric accretion type mound-shoal complex with the characteristics of"large mound and large shoal"is the exploration target for oil and gas reservoir.
基金Supported by the China National Science and Technology Major Project(2016ZX05007-002)
文摘Drilling,seismic and logging data were used to evaluate the hydrocarbon accumulation conditions of the mound-shoal complexes in the platform margin of the fourth member of Sinian Dengying Formation in the east side of the Mianzhu-Changning intracratonic rift in the Sichuan Basin.The four understandings are:(1)The platform margin belt of the Deng 4 Member can be divided into three sections,northern,middle and southern;the middle section is at the core of the Gaoshiti-Moxi paleouplift and the structural high now,while the southern and northern sections are at the slope of the paleouplift and the structural lows now;the three sections have similar development characteristics and reservoir features of platform margin mound-shoal complex.(2)In the margin of the east side of the rift,there are several faults nearly perpendicular to the platform margin belt,the faults divide the platform margin belt into rugged paleo-landform,and the high part developed platform margin mound-shoal complexes and the reservoirs are good in physical properties,while the low part developed inter-beach depression and no mound-shoal complexes,where the reservoirs are poor in physical properties.(3)The six groups of faults nearly perpendicular to the platform margin belt divide the platform margin belt into seven large mound-shoal complexes which have similar hydrocarbon accumulation conditions and accumulation evolution process and are rich in petroleum.(4)The inter shoal depressions between the mound-shoal complexes are characterized by tighter lithology,which can block the updip direction of the mounds and shoals at the lower part of the slope of the paleouplift and are favorable for the later preservation of mound-shoal gas reservoirs.This has been proved by Well Jiaotan 1 and Heshen 2 drilled successfully.The mound-shoal complexes on the platform margin of the structural slope area have a good exploration prospect.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Science Foundation of China under contract No.41202086+3 种基金the National Natural Science Foundation of China under contract No.41102068China Postdoctoral Science Special Fund under contract No.201003654the Special Fund for Basic Scientific Research of Central Colleges,China University of Geosciences(Wuhan)under contract No.CUGL100252the Young Scholars Development Fund of SWPU under contract No.201599010078
文摘As a potential oil and gas reservoir, reef complexes have been a research focus from petroleum geologists for a long time. There are favorable conditions for the development of reef complexes in the South China Sea; however, their internal structures, evolution and distribution are still poorly understood. Based on 2D and 3D seismic data, the internal structures and evolution patterns of the reef complexes on the carbonate platform margin in the deep water areas over the western South China Sea were studied in detail. The result shows that two types of reef complexes, i.e., fault controlling platform margin reef complexes and ramp reef complexes have been developed in the study area. The reef complexes have independent or continuous mound or lenticular seismic reflections, with three internal structures (i.e., aggrading, prograding and retrograding structures). There are different growth rates during the evolution of the reef complexes, resulting in the formation of catch-up reefs, keep-up reefs and quick step reefs. The study also reveals that different platform margin reef complexes have different internal structures and distributions, because of the different platform types. These results may be applied to the exploration and prediction of carbonate platform margin reef complexes in other areas that are similar to the study area.
基金Supported by the Science and Technology Project of PetroChina (2021DJ0605)。
文摘Based on the seismic, logging, drilling and other data, the distribution, structural types and mound-shoal hydrocarbon accumulation characteristics of platform margins of the Sinian Dengying Formation in the Deyang-Anyue Rift and its periphery were analyzed. Four types of platform margins are developed in the Dengying Formation, i.e., single-stage fault-controlled platform margin, multi-stage fault-controlled platform margin, gentle slope platform margin, and overlapping platform margin. In the Gaoshiti West-Weiyuan East area, single-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in nearly NEE direction and are shielded by faults and mudstones, forming fault-controlled–lithologic traps. In the Lezhi-Penglai area, independent and multi-stage fault controlled platform margins are developed in the Deng 2 Member, which trend in NE direction and are controlled by synsedimentary faults;the mound-shoal complexes are aggraded and built on the hanging walls of the faults, and they are shielded by tight intertidal belts and the Lower Cambrian source rocks in multiple directions, forming fault-controlled–lithologic and other composite traps. In the Weiyuan-Ziyang area, gentle slope platform margins are developed in the Deng 2 Member, which trend in NW direction;the mound-shoal complexes are mostly thin interbeds as continuous bands and shielded by tight intertidal belts in the updip direction, forming lithologic traps. In the Gaoshiti-Moxi-Yanting area, overlapping platform margins are developed in the Deng 2 and Deng 4 members;the mound-shoal complexes are aggraded and overlaid to create platform margin buildup with a huge thickness and sealed by tight intertidal belts and the Lower Cambrian mudstones in the updip direction, forming large-scale lithologic traps on the north slope of the Central Sichuan Paleouplift. To summarize, the mound-shoal complexes on the platform margins in the Dengying Formation in the Penglai-Zhongjiang area, Moxi North-Yanting area and Weiyuan-Ziyang area are large in scale, with estimated resources of 1.58×1012 m3, and they will be the key targets for the future exploration of the Dengying Formation in the Sichuan Basin.
基金Supported by the PetroChina and Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX010000)Basic Forward-Looking Project in Upstream Field of CNPC(2021DJ0501)General Program of NSFC(42172166).
文摘Through the analysis of logging,field outcrops,cores and geochemical data,and based on the study of the relationships between sea level changes,sequence filling,paleo-geomorphy and lithofacies,the sequence lithofacies paleo-geography and evolution process of the Lower Permian Liangshan-Qixia Formation(Qixia Stage for short)in Sichuan Basin and its surrounding areas are restored.The Qixia Stage can be divided into three third-order sequences,in which SQ0,SQ1 and SQ2 are developed in the depression area,and SQ1 and SQ2 are only developed in other areas.The paleo-geomorphy reflected by the thickness of each sequence indicates that before the deposition of the Qixia Stage in the Early Permian,the areas surrounding the Sichuan Basin are characterized by“four uplifts and four depressions”,namely,four paleo-uplifts/paleo-lands of Kangdian,Hannan,Shennongjia and Xuefeng Mountain,and four depressions of Chengdu-Mianyang,Kangdian front,Jiangkou and Yichang;while the interior of the basin is characterized by“secondary uplifts,secondary depressions and alternating convex-concave”.SQ2 is the main shoal forming period of the Qixia Formation,and the high-energy mound shoal facies mainly developed in the highs of sedimentary paleo-geomorphy and the relative slope break zones.The distribution of dolomitic reservoirs(dolomite,limy dolomite and dolomitic limestone)has a good correlation with the sedimentary geomorphic highs and slope break zones.The favorable mound-shoal and dolomitic reservoirs are distributed around depressions at platform-margin and along highs and around sags in the basin.It is pointed out that the platform-margin area in western Sichuan Basin is still the key area for exploration at present;while areas around Chengdu-Mianyang depression and Guangwang secondary depression inside the platform and areas around sags in central Sichuan-southern Sichuan are favorable exploration areas for dolomitic reservoirs of the Qixia Formation in the next step.