为完善基于先验知识的标记增强方法对于情绪信息的捕捉,提出一种基于语义规则增强的蒙古语情感分布学习方法(semantic rule enhancement based Mongolian emotion distribution learning, SRE-MEDL)。在情感轮和情感词典的基础上,引入...为完善基于先验知识的标记增强方法对于情绪信息的捕捉,提出一种基于语义规则增强的蒙古语情感分布学习方法(semantic rule enhancement based Mongolian emotion distribution learning, SRE-MEDL)。在情感轮和情感词典的基础上,引入程度词典和否定词典,得到各种情感词组合,以此制定相应的语义规则计算情感词权重,将其融入到标记增强中。在情感分布学习中融入从情感分布空间到实例特征空间的反向重构映射来弥补正向映射引起的原始信息丢失问题。对比实验结果显示,在蒙古语和中英文常用数据集上,SRE-MEDL方法在标记增强任务和情感分布学习中的表现均优于现有方法。展开更多
情感分布学习是一种近年提出的有效的多情绪分析模型,其核心思路是通过情感分布记录示例在各个情绪上的表达程度,适于处理存在情绪模糊性的情感分析任务。针对现有的情感分布学习方法较少考虑情感心理学先验知识的问题,提出一种基于情...情感分布学习是一种近年提出的有效的多情绪分析模型,其核心思路是通过情感分布记录示例在各个情绪上的表达程度,适于处理存在情绪模糊性的情感分析任务。针对现有的情感分布学习方法较少考虑情感心理学先验知识的问题,提出一种基于情感轮注意力的情感分布学习(emotion wheel attention based emotion distribution learning,EWA-EDL)模型。EWA-EDL模型为每种基本情绪生成一个描述情绪心理学相关性的先验情感分布,再通过注意力机制将基于情感轮的先验知识直接融入深度神经网络。EWA-EDL模型采用端到端的方式对深度网络进行训练,同时学习情感分布预测和情绪分类任务。EWA-EDL模型主要由5部分构成,分别为输入层、卷积层、池化层、注意力层和多任务损失层。在8个常用的文本情感数据集上的对比实验表明,EWA-EDL模型在情感分布预测和情绪分类任务上的性能均优于对比的情感分布学习方法。展开更多
情感分布学习是一种近年提出的用于处理存在情绪模糊性的多情绪分析模型,其核心思路是通过情感分布记录示例在各个情绪上的表达程度.不同于传统的单标记或多标记学习,情感分布学习可以定量地对多个情绪同时建模.目前,情感分布学习面临...情感分布学习是一种近年提出的用于处理存在情绪模糊性的多情绪分析模型,其核心思路是通过情感分布记录示例在各个情绪上的表达程度.不同于传统的单标记或多标记学习,情感分布学习可以定量地对多个情绪同时建模.目前,情感分布学习面临的一个重要困难是缺乏已标注情感分布的文本数据集.为了利用大量已有的单标记情感数据集,情感分布标记增强方法可以将示例的情绪标签增强为情感分布.基于文本中的情感词蕴含着大量情感信息的特点,本文在引入普鲁契克情感轮心理学模型的基础上,提出基于情感轮和情感词典的情感分布标记增强方法(Emotion Wheel and Lexicon based emotion distribution Label Enhancement,EWLLE).EWLLE方法基于情绪的心理学距离为句子的真实情绪标签和情感词的情绪标签分别生成离散高斯分布,然后通过分布的叠加将两种信息综合为统一的情感分布.在7个常用的中英文文本情感数据集上的对比实验表明,EWLLE方法在情绪识别任务上的性能优于已有的情感分布标记增强方法.展开更多
文摘为完善基于先验知识的标记增强方法对于情绪信息的捕捉,提出一种基于语义规则增强的蒙古语情感分布学习方法(semantic rule enhancement based Mongolian emotion distribution learning, SRE-MEDL)。在情感轮和情感词典的基础上,引入程度词典和否定词典,得到各种情感词组合,以此制定相应的语义规则计算情感词权重,将其融入到标记增强中。在情感分布学习中融入从情感分布空间到实例特征空间的反向重构映射来弥补正向映射引起的原始信息丢失问题。对比实验结果显示,在蒙古语和中英文常用数据集上,SRE-MEDL方法在标记增强任务和情感分布学习中的表现均优于现有方法。
文摘情感分布学习是一种近年提出的有效的多情绪分析模型,其核心思路是通过情感分布记录示例在各个情绪上的表达程度,适于处理存在情绪模糊性的情感分析任务。针对现有的情感分布学习方法较少考虑情感心理学先验知识的问题,提出一种基于情感轮注意力的情感分布学习(emotion wheel attention based emotion distribution learning,EWA-EDL)模型。EWA-EDL模型为每种基本情绪生成一个描述情绪心理学相关性的先验情感分布,再通过注意力机制将基于情感轮的先验知识直接融入深度神经网络。EWA-EDL模型采用端到端的方式对深度网络进行训练,同时学习情感分布预测和情绪分类任务。EWA-EDL模型主要由5部分构成,分别为输入层、卷积层、池化层、注意力层和多任务损失层。在8个常用的文本情感数据集上的对比实验表明,EWA-EDL模型在情感分布预测和情绪分类任务上的性能均优于对比的情感分布学习方法。
文摘情感分布学习是一种近年提出的用于处理存在情绪模糊性的多情绪分析模型,其核心思路是通过情感分布记录示例在各个情绪上的表达程度.不同于传统的单标记或多标记学习,情感分布学习可以定量地对多个情绪同时建模.目前,情感分布学习面临的一个重要困难是缺乏已标注情感分布的文本数据集.为了利用大量已有的单标记情感数据集,情感分布标记增强方法可以将示例的情绪标签增强为情感分布.基于文本中的情感词蕴含着大量情感信息的特点,本文在引入普鲁契克情感轮心理学模型的基础上,提出基于情感轮和情感词典的情感分布标记增强方法(Emotion Wheel and Lexicon based emotion distribution Label Enhancement,EWLLE).EWLLE方法基于情绪的心理学距离为句子的真实情绪标签和情感词的情绪标签分别生成离散高斯分布,然后通过分布的叠加将两种信息综合为统一的情感分布.在7个常用的中英文文本情感数据集上的对比实验表明,EWLLE方法在情绪识别任务上的性能优于已有的情感分布标记增强方法.