以分子间的静电作用为理论基础,研制出一种适用于中高温地层的阳离子型中高分子量的压裂液用聚合物稠化剂,通过红外光谱谱图以及核磁共振谱图分析聚合物结构,利用扫描电镜观察加入电吸引诱导剂后聚合物溶液空间结构的变化,并对该聚合物...以分子间的静电作用为理论基础,研制出一种适用于中高温地层的阳离子型中高分子量的压裂液用聚合物稠化剂,通过红外光谱谱图以及核磁共振谱图分析聚合物结构,利用扫描电镜观察加入电吸引诱导剂后聚合物溶液空间结构的变化,并对该聚合物压裂液稠化剂进行性能测试,发现该压裂液聚合物稠化剂在加入电吸引诱导剂后可形成较强的空间网状结构,增黏效果很好,并且在110℃、130℃、170 s-1下剪切1 h后黏度保持在40~55 m Pa s,在90℃条件下破胶时间为71.5 min,破胶后无残渣,岩心伤害率低,为12.07%。该压裂液表现出较强的黏弹性,携砂性能好,沉砂速率为1.96×10-4 m/min,且在砂比为60%时,常温下1 h后悬砂状态良好。该聚合物压裂液稠化剂满足现场压裂施工的要求,加之合成原料易得、价格较低,其现场应用前景广泛,通过在苏里格气田苏20-23-X井盒8下段的现场压裂施工测试中可以看出,其施工效果显著。展开更多
为配制热稳定性优良的压裂液,以丙烯酰胺、丙烯酸为骨架单体,磺酸基单体、阳离子单体、亲水长链单体为功能单体合成了一种可以用于地层温度在200℃以上的压裂液增稠剂PAS-1。通过研究单体比例及其他反应条件对增稠剂性能的影响确定了PA...为配制热稳定性优良的压裂液,以丙烯酰胺、丙烯酸为骨架单体,磺酸基单体、阳离子单体、亲水长链单体为功能单体合成了一种可以用于地层温度在200℃以上的压裂液增稠剂PAS-1。通过研究单体比例及其他反应条件对增稠剂性能的影响确定了PAS-1最佳合成条件,通过红外光谱和核磁共振氢谱表征了其分子结构,并评价了其作为压裂液增稠剂PAS-1的主要性能。研究结果表明:增稠剂PAS-1的最佳合成条件为:单体AM、AA、PSN、APEG、DMDAAC摩尔比4.5∶2.5∶0.80∶0.0040∶0.18,引发剂过硫酸铵用量为单体总质量0.8%,引发温度40℃下反应30 min后在60℃下保温反应24 h。增稠剂PAS-1高分子本身在300℃以内具有较好的热稳定性,增稠剂PAS-1还具有较强的增黏能力,质量分数0.6%的PAS-1溶液黏度达43.7 m Pa·s。1.0%增稠剂PAS-1基液中加入0.6%有机钛锆复合交联剂SJ66,支撑剂沉降速率为0.095 mm/min,表明合成的增稠剂配制的压裂液交联体系具有优良的悬砂性能。1%增稠剂PAS-1+0.6%有机钛锆复合交联剂SJ66的压裂液具有较好的耐温抗剪切能力,在温度200℃、剪切速率170 s-1下剪切2 h后的压裂液黏度保留值在50 m Pa·s以上,可满足高温压裂液的施工性能要求。展开更多
Current interest in deep,low-permeability formations(<10 md)demands accelerated development of high-temperature hydraulic fracturing technologies.Conventional guar systems break down above 300°F and require hi...Current interest in deep,low-permeability formations(<10 md)demands accelerated development of high-temperature hydraulic fracturing technologies.Conventional guar systems break down above 300°F and require higher polymer loadings to maintain thermal stability.However,higher polymer loadings generate more residue and damage to the proppant pack and the formation.To resolve these problems,a variety of high-temperature stabilizers are added to enhance the thermal stability of these fracturing fluids at temperatures above 300F.The focus of this work is to:(1)identify those additives that best enhance temperature stability of fracturing fluids and(2)study the rheological influence of incorporating these additives on the fracturing fluid systems.The experimental fracturing-fluid solutions were prepared at a total polymer concentration of 30 and 40 lb/1000 gal.Additives such as synthetic polymer,oxygen scavengers,crosslinkers,crosslinker delay additives,and pH buffers were examined in this work.Hydrated polymer solutions were crosslinked with a metallic crosslinker between 200 and 400°F.Viscosity measurements were carried out in a highpressure/high-temperature(HP/HT)rheometer to evaluate rheology and thermal stability.Results show that adding a synthetic polymer and a crosslinker with the slowest reaction rate improves the fracturing fluid thermal stability.Of the three other additives tested,oxygen scavengers showed the greatest enhancement to thermal stability while pH buffers showed the least.Through the addition of high-temperature stabilizing additives,the fracturing fluid in this work was able to maintain a stable performance at temperatures up to 400°F.Maintaining the thermal stability of fracturing fluids at a lower polymer loading remains a challenge in the industry.This work proposes techniques that can be used to enhance the thermal stability of fracturing fluids.Deeper knowledge about these different techniques will allow for better additive development and application in the field.展开更多
文摘以分子间的静电作用为理论基础,研制出一种适用于中高温地层的阳离子型中高分子量的压裂液用聚合物稠化剂,通过红外光谱谱图以及核磁共振谱图分析聚合物结构,利用扫描电镜观察加入电吸引诱导剂后聚合物溶液空间结构的变化,并对该聚合物压裂液稠化剂进行性能测试,发现该压裂液聚合物稠化剂在加入电吸引诱导剂后可形成较强的空间网状结构,增黏效果很好,并且在110℃、130℃、170 s-1下剪切1 h后黏度保持在40~55 m Pa s,在90℃条件下破胶时间为71.5 min,破胶后无残渣,岩心伤害率低,为12.07%。该压裂液表现出较强的黏弹性,携砂性能好,沉砂速率为1.96×10-4 m/min,且在砂比为60%时,常温下1 h后悬砂状态良好。该聚合物压裂液稠化剂满足现场压裂施工的要求,加之合成原料易得、价格较低,其现场应用前景广泛,通过在苏里格气田苏20-23-X井盒8下段的现场压裂施工测试中可以看出,其施工效果显著。
文摘为配制热稳定性优良的压裂液,以丙烯酰胺、丙烯酸为骨架单体,磺酸基单体、阳离子单体、亲水长链单体为功能单体合成了一种可以用于地层温度在200℃以上的压裂液增稠剂PAS-1。通过研究单体比例及其他反应条件对增稠剂性能的影响确定了PAS-1最佳合成条件,通过红外光谱和核磁共振氢谱表征了其分子结构,并评价了其作为压裂液增稠剂PAS-1的主要性能。研究结果表明:增稠剂PAS-1的最佳合成条件为:单体AM、AA、PSN、APEG、DMDAAC摩尔比4.5∶2.5∶0.80∶0.0040∶0.18,引发剂过硫酸铵用量为单体总质量0.8%,引发温度40℃下反应30 min后在60℃下保温反应24 h。增稠剂PAS-1高分子本身在300℃以内具有较好的热稳定性,增稠剂PAS-1还具有较强的增黏能力,质量分数0.6%的PAS-1溶液黏度达43.7 m Pa·s。1.0%增稠剂PAS-1基液中加入0.6%有机钛锆复合交联剂SJ66,支撑剂沉降速率为0.095 mm/min,表明合成的增稠剂配制的压裂液交联体系具有优良的悬砂性能。1%增稠剂PAS-1+0.6%有机钛锆复合交联剂SJ66的压裂液具有较好的耐温抗剪切能力,在温度200℃、剪切速率170 s-1下剪切2 h后的压裂液黏度保留值在50 m Pa·s以上,可满足高温压裂液的施工性能要求。
基金The authors thank Gia Alexander for editorial assistance in preparing this paper.
文摘Current interest in deep,low-permeability formations(<10 md)demands accelerated development of high-temperature hydraulic fracturing technologies.Conventional guar systems break down above 300°F and require higher polymer loadings to maintain thermal stability.However,higher polymer loadings generate more residue and damage to the proppant pack and the formation.To resolve these problems,a variety of high-temperature stabilizers are added to enhance the thermal stability of these fracturing fluids at temperatures above 300F.The focus of this work is to:(1)identify those additives that best enhance temperature stability of fracturing fluids and(2)study the rheological influence of incorporating these additives on the fracturing fluid systems.The experimental fracturing-fluid solutions were prepared at a total polymer concentration of 30 and 40 lb/1000 gal.Additives such as synthetic polymer,oxygen scavengers,crosslinkers,crosslinker delay additives,and pH buffers were examined in this work.Hydrated polymer solutions were crosslinked with a metallic crosslinker between 200 and 400°F.Viscosity measurements were carried out in a highpressure/high-temperature(HP/HT)rheometer to evaluate rheology and thermal stability.Results show that adding a synthetic polymer and a crosslinker with the slowest reaction rate improves the fracturing fluid thermal stability.Of the three other additives tested,oxygen scavengers showed the greatest enhancement to thermal stability while pH buffers showed the least.Through the addition of high-temperature stabilizing additives,the fracturing fluid in this work was able to maintain a stable performance at temperatures up to 400°F.Maintaining the thermal stability of fracturing fluids at a lower polymer loading remains a challenge in the industry.This work proposes techniques that can be used to enhance the thermal stability of fracturing fluids.Deeper knowledge about these different techniques will allow for better additive development and application in the field.