The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established bas...The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.展开更多
Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the ef...Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.展开更多
Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosi...Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.展开更多
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w...Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking.展开更多
Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum e...Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.展开更多
This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifica...This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifically,high-resolution or micro X-ray computed tomography(CT)imaging techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada,considered flow analogous to the Brazilian Pre-salt carbonate reservoirs.The petrophysical results comprised two distinct stromatolite depositional facies,the columnar and the fine-grained facies.By generating pore network model(PNM),the study quantified the relationship between key features of the porous system,including pore and throat radius,throat length,coordination number,shape factor,and pore volume.The study found that the less dense pore network of the columnar sample is typically characterized by larger pores and wider and longer throats but with a weaker connection of throats to pores.Both facies exhibited less variability in the radius of the pores and throats in comparison to throat length.Additionally,a series of core flooding experiments coupled with medical CT scanning was designed and conducted in the plug samples to assess flow propagation and saturation fields.The study revealed that the heterogeneity and presence of disconnected or dead-end pores significantly impacted the flow patterns and saturation.Two-phase flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and bypassed it in others.The relation between saturation profiles,porosity profiles,and the number of fluid flow patterns for the samples was evident.Only for the columnar plug sample was the enhancement in recovery factor after shifting to lower salinity water injection(SB)observed.展开更多
The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation.In this paper,a three-dimensional ...The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation.In this paper,a three-dimensional cubic pore-network model based on invasion percolation is developed to study the effect of hydrate particle formation and growth habit on the permeability.The variation of permeability in porous media with different hydrate saturation is studied by solving the network problem.The simulation results are well consistent with the experimental data.The proposed model predicts that the permeability will reduce exponentially with the increase of hydrate saturation,which is crucial in developing a deeper understanding of the mechanism of hydrate formation and dissociation in porous media.展开更多
A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relati...A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relative permeability number' (RPN) was firstly defined, and then used to describe the degree of water block. Imbibition process simulations show that the RPN drops in accordance with the extension of the averaged pore throat radius from 0.05 to 1.5 μm, and yet once beyond that point of 1.5 μm, the RPN reaches a higher value, indicating the existence of a critical pore throat radius where water block is the maximum. When the wettability of the samples changes from water-wet to weakly water-wet, weakly gas-wet, or gas(oil)-wet, the gas RPN increases consistently, but this consistency is disturbed by the RPN dropping for weakly water-wet samples for water saturations less than 0.4, which means weakly waterwet media are more easily water blocked than water-wet systems. In the situation where the initial water saturation exceeds 0.05, water block escalates along with an increase in initial water saturation.展开更多
This paper aims to improve the accuracy and applicability of gas diffusion mathematical models from coal particles. Firstly, a new constitutive model for gas diffusion from coal particles with tri-disperse pore struct...This paper aims to improve the accuracy and applicability of gas diffusion mathematical models from coal particles. Firstly, a new constitutive model for gas diffusion from coal particles with tri-disperse pore structure is constructed by considering the difference in characteristics between soft coal and hard coal.The analytical solution is then derived, that is, the quantitative relationship between gas diffusion rate(Qt/Q_∞) and diffusion time(t), The pore structure parameters of soft coal and hard coal from Juji coal mine are determined. Gas diffusion rules are numerically calculated and investigated by physical simulation methods. Lastly, the applicability of this model is verified. The results show that the homogeneous model only applies to the gas diffusion process of hard coal during the initial 10 min. The calculation results from this model and the physical experimental results of soft coal and hard coal are nearly identical during the initial 30 min.展开更多
Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformat...Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.展开更多
The pore size distribution(PSD)measured by the gas bubble point(GBP)method ofceramic microfiltration(MF)membranes prepared by suspension technique was found to be signifi-cantly influenced by the membrane thickness.A ...The pore size distribution(PSD)measured by the gas bubble point(GBP)method ofceramic microfiltration(MF)membranes prepared by suspension technique was found to be signifi-cantly influenced by the membrane thickness.A culm-like model for pore structure was introduced tocharacterize the membrane pores instead of the conventional model which does not reflect the radiusvariation along the pore passages and is unable to explain the thickness effect on the membrane PSD.A laminate structure,taking the culm-like model for pore structure into consideration,was hypoth-esized for ceramic MF membranes.A mathematical model was then established to quantitativelydescribe the relationship between the membrane number PSD and the membrane thickness.Goodresults were obtained for the correlation of mean pore size and simulation of the PSD for ceramicMF membranes.展开更多
Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecul...Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.展开更多
The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper mode...The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper model. With mirror imagin boundary condition and three initial conditions, the equation is solved for a dynamic model that consists of six seismic belts and eight seismogenous sources in each belt with both explicit algorithm and implicit algorithm. The analysis of the model with water sources shows that the implicit algorithm is better to be used to calculate the model. Taking a constant proportion of the pore pressure of a broken element to that of its neighboring elements, the seismicity of the model is calculated with mirror boundary condition and no water source initial condition. The results shows that the frequency and magnitude of shocks are both higher than those in the model with no water pore pressure, which provides more complexity to earthquake prediction.展开更多
The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichm...The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis.展开更多
The numerical modeling of oil displacement by nanofluid based on three-dimensional micromodel of cores with different permeability was carried out by the volume of fluid(VOF)method with experimentally measured values ...The numerical modeling of oil displacement by nanofluid based on three-dimensional micromodel of cores with different permeability was carried out by the volume of fluid(VOF)method with experimentally measured values of interfacial tension,contact angle and viscosity.Water-based suspensions of SiO_(2) nanoparticles with a concentration of 0–1%and different particle sizes were considered to study the effect of concentration and size of nanoparticles,displacement fluid flow rate,oil viscosity and core permeability on the efficiency of oil displacement by nanofluid.The oil recovery factor(ORF)increases with the increase of mass fraction of nanoparticles.An increase in nanoparticles’concentration to 0.5% allows an increase in ORF by about 19% compared to water flooding.The ORF increases with the decrease of nanoparticle size,and declines with the increase of displacing rate.It has been shown that the use of nanosuspensions for enhanced oil recovery is most effective for low-permeable reservoirs with highly viscous oil in injection modes with capillary number close to the immobilization threshold,and the magnitude of oil recovery enhancement decreases with the increase of displacement speed.The higher the oil viscosity,the lower the reservoir rock permeability,the higher the ORF improved by nanofluids will be.展开更多
Coal rock is a type of dual-porosity medium,which is composed of matrix pores and fracture-cutting matrix.They play different roles in the seepage and storage capacity of coal rock.Therefore,constructing the micropore...Coal rock is a type of dual-porosity medium,which is composed of matrix pores and fracture-cutting matrix.They play different roles in the seepage and storage capacity of coal rock.Therefore,constructing the micropore structure of coal rock is very important in the exploration and development of coalbed methane.In this study,we use a coal rock digital core and three-dimensional modeling to study the pore structure of coal rock.First,the micropore structure of coal rock is quantitatively analyzed using a two-dimensional thin-section image,and the quantitative information of the pore and fracture(cleat)structure in the coal rock is extracted.The mean value and standard deviation of the face porosity and pore radius are obtained using statistical analysis.The number of pores is determined using dichotomy and spherical random-packing methods based on compression.By combining with the results of the petrophysical analysis,the single-porosity structure model of the coal rock is obtained using a nonequal-diameter sphere to represent the pores of the coal rock.Then,an ellipsoid with an aspect ratio that is very much lesser than one is used to represent the fracture(cleat)in the coal rock,and a dual-pore structure model of the coal rock is obtained.On this basis,the relationship between the different pore aspect ratios and porosity is explored,and a fitting relationship is obtained.The results show that a nonlinear relationship exists between them.The relationship model can provide a basis for the prediction of coal rock pore structure and the pore structure parameters and provide a reference for understanding the internal structure of coalbed methane reservoirs.展开更多
Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (...Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.展开更多
基金Supported by the National Natural Science Foundation of China(51474224)The Shenzhen Peacock Plan(KQTD2017033114582189)The Shenzhen Science and Technology Innovation Committee(JCYJ20170817152743178)
文摘The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.
基金supported by National Natural Science Foundation of China(Grant No.42172159)Science Foundation of China University of Petroleum,Beijing(Grant No.2462023XKBH002).
文摘Multiphase flow in low permeability porous media is involved in numerous energy and environmental applications.However,a complete description of this process is challenging due to the limited modeling scale and the effects of complex pore structures and wettability.To address this issue,based on the digital rock of low permeability sandstone,a direct numerical simulation is performed considering the interphase drag and boundary slip to clarify the microscopic water-oil displacement process.In addition,a dual-porosity pore network model(PNM)is constructed to obtain the water-oil relative permeability of the sample.The displacement efficiency as a recovery process is assessed under different wetting and pore structure properties.Results show that microscopic displacement mechanisms explain the corresponding macroscopic relative permeability.The injected water breaks through the outlet earlier with a large mass flow,while thick oil films exist in rough hydrophobic surfaces and poorly connected pores.The variation of water-oil relative permeability is significant,and residual oil saturation is high in the oil-wet system.The flooding is extensive,and the residual oil is trapped in complex pore networks for hydrophilic pore surfaces;thus,water relative permeability is lower in the water-wet system.While the displacement efficiency is the worst in mixed-wetting systems for poor water connectivity.Microporosity negatively correlates with invading oil volume fraction due to strong capillary resistance,and a large microporosity corresponds to low residual oil saturation.This work provides insights into the water-oil flow from different modeling perspectives and helps to optimize the development plan for enhanced recovery.
基金Supported by the National Science and Technology Major Project of China(2017ZX05035).
文摘Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.
基金financially supported by the National Natural Science Foundation of China (22078090 and 92034301)the Shanghai Rising-Star Program (21QA1402000)+1 种基金the Natural Science Foundation of Shanghai (21ZR1418100)the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-21C02)。
文摘Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking.
基金supported by the National Natural Science Foundation of China(42004086,42172159)the Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province(YSK2023007).
文摘Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.
基金the support of EPIC—Energy Production Innovation Center,hosted by the University of Campinas(UNICAMP)sponsored by FAPESP—Sao Paulo Research Foundation(2017/15736—3 process)+2 种基金the support and funding from Equinor Brazil and the support of ANP(Brazil's National Oil,Natural Gas and Biofuels Agency)through the R&D levy regulationthe Center of Energy and Petroleum Studies(CEPETRO)the School of Mechanical Engineering(FEM)。
文摘This study investigates the impact of pore network characteristics on fluid flow through complex and heterogeneous porous media,providing insights into the factors affecting fluid propagation in such systems.Specifically,high-resolution or micro X-ray computed tomography(CT)imaging techniques were utilized to examine outcrop stromatolite samples of the Lagoa Salgada,considered flow analogous to the Brazilian Pre-salt carbonate reservoirs.The petrophysical results comprised two distinct stromatolite depositional facies,the columnar and the fine-grained facies.By generating pore network model(PNM),the study quantified the relationship between key features of the porous system,including pore and throat radius,throat length,coordination number,shape factor,and pore volume.The study found that the less dense pore network of the columnar sample is typically characterized by larger pores and wider and longer throats but with a weaker connection of throats to pores.Both facies exhibited less variability in the radius of the pores and throats in comparison to throat length.Additionally,a series of core flooding experiments coupled with medical CT scanning was designed and conducted in the plug samples to assess flow propagation and saturation fields.The study revealed that the heterogeneity and presence of disconnected or dead-end pores significantly impacted the flow patterns and saturation.Two-phase flow patterns and oil saturation distribution reveal a preferential and heterogeneous displacement that mainly swept displaced fluid in some regions of plugs and bypassed it in others.The relation between saturation profiles,porosity profiles,and the number of fluid flow patterns for the samples was evident.Only for the columnar plug sample was the enhancement in recovery factor after shifting to lower salinity water injection(SB)observed.
基金supported by the National High Technology Research and Development (863) Program of China (Grant Nos.2006AA09A209-5)the National Natural Science Foundation of China (Grant Nos. 90510003)the Major Research Project of the Ministry of Education (Grant Nos. 306005)
文摘The permeability in the methane hydrate reservoir is one of the key parameters in estimating the gas production performance and the flow behavior of gas and water during dissociation.In this paper,a three-dimensional cubic pore-network model based on invasion percolation is developed to study the effect of hydrate particle formation and growth habit on the permeability.The variation of permeability in porous media with different hydrate saturation is studied by solving the network problem.The simulation results are well consistent with the experimental data.The proposed model predicts that the permeability will reduce exponentially with the increase of hydrate saturation,which is crucial in developing a deeper understanding of the mechanism of hydrate formation and dissociation in porous media.
基金support from the National Key Technology R&D Program in the 11th Five-Year Plan Period (Grant No: 2008ZX05054)the Non-main Petroleum Subject Cultivating Fund of China University of Petroleum.
文摘A pore network model was used in this paper to investigate the factors, in particular, throat radius, wettability and initial water saturation, causing water block in low permeability reservoirs. A new term - 'relative permeability number' (RPN) was firstly defined, and then used to describe the degree of water block. Imbibition process simulations show that the RPN drops in accordance with the extension of the averaged pore throat radius from 0.05 to 1.5 μm, and yet once beyond that point of 1.5 μm, the RPN reaches a higher value, indicating the existence of a critical pore throat radius where water block is the maximum. When the wettability of the samples changes from water-wet to weakly water-wet, weakly gas-wet, or gas(oil)-wet, the gas RPN increases consistently, but this consistency is disturbed by the RPN dropping for weakly water-wet samples for water saturations less than 0.4, which means weakly waterwet media are more easily water blocked than water-wet systems. In the situation where the initial water saturation exceeds 0.05, water block escalates along with an increase in initial water saturation.
基金the National Natural Science Foundation of China(Nos.51374095 and 51404099)the Program for Innovative Research Team in University of Ministry of Education of China(IRT_16R22)+1 种基金the Henan Provincial Key Scientific and Technological Project(No.092102310314)China Scholarship Council
文摘This paper aims to improve the accuracy and applicability of gas diffusion mathematical models from coal particles. Firstly, a new constitutive model for gas diffusion from coal particles with tri-disperse pore structure is constructed by considering the difference in characteristics between soft coal and hard coal.The analytical solution is then derived, that is, the quantitative relationship between gas diffusion rate(Qt/Q_∞) and diffusion time(t), The pore structure parameters of soft coal and hard coal from Juji coal mine are determined. Gas diffusion rules are numerically calculated and investigated by physical simulation methods. Lastly, the applicability of this model is verified. The results show that the homogeneous model only applies to the gas diffusion process of hard coal during the initial 10 min. The calculation results from this model and the physical experimental results of soft coal and hard coal are nearly identical during the initial 30 min.
基金Project(2009AA11Z101) supported by National High Technology Research and Development Program of ChinaProject supported by Postdoctoral Science Foundation of Central South University,China+1 种基金Project(2012QNZT045) supported by Fundamental Research Funds for Central Universities of ChinaProject(2011CB710601) supported by the National Basic Research Program of China
文摘Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.
基金Supported by the National Natural Science Foundation of China.
文摘The pore size distribution(PSD)measured by the gas bubble point(GBP)method ofceramic microfiltration(MF)membranes prepared by suspension technique was found to be signifi-cantly influenced by the membrane thickness.A culm-like model for pore structure was introduced tocharacterize the membrane pores instead of the conventional model which does not reflect the radiusvariation along the pore passages and is unable to explain the thickness effect on the membrane PSD.A laminate structure,taking the culm-like model for pore structure into consideration,was hypoth-esized for ceramic MF membranes.A mathematical model was then established to quantitativelydescribe the relationship between the membrane number PSD and the membrane thickness.Goodresults were obtained for the correlation of mean pore size and simulation of the PSD for ceramicMF membranes.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)the National Natural Science Foundation of China(41772150)
文摘Based on scanning electron microscopy and nitrogen adsorption experiment at low temperature, the pore types and structures of the Longmaxi Formation shale in the Dianqianbei area, SW China were analyzed, and a molecular model was built. According to mathematical statistics, the validation of the model was solved by converting it into a mathematical formula. It is found by SEM that the pores in clay mineral layers and organic pores occupy most of the pores in shale; the nitrogen adsorption experiment at low temperature reveals that groove pores formed by flaky particles and micro-pores are the main types of pores, and the results of the two are in good agreement. A molecular model was established by illite and graphene molecular structures. Moreover, based on the fractal theory and the Frenkel-Halsey-Hill formula, a modified Frenkel-Halsey-Hill formula was proposed. The reliability of the molecular model was verified to some extent by obtaining parameters such as the fractal dimension, replacement rate and fractal coefficients of correction, and mathematical calculation. This study provides the theoretical basis for quantitative study of shale reservoirs.
文摘The influence of fluid on seismicity of a computerized system is analyzed in this paper. The diffusion equation of fluid in a crustal fault area is developed and used in the calculation of a spring slide damper model. With mirror imagin boundary condition and three initial conditions, the equation is solved for a dynamic model that consists of six seismic belts and eight seismogenous sources in each belt with both explicit algorithm and implicit algorithm. The analysis of the model with water sources shows that the implicit algorithm is better to be used to calculate the model. Taking a constant proportion of the pore pressure of a broken element to that of its neighboring elements, the seismicity of the model is calculated with mirror boundary condition and no water source initial condition. The results shows that the frequency and magnitude of shocks are both higher than those in the model with no water pore pressure, which provides more complexity to earthquake prediction.
文摘The Chang-63 reservoir in the Huaqing area has widely developed tight sandstone "thick sand layers, but not reservoirs characterized by rich in oil", and it is thus necessary to further study its oil and gas enrichment law. This study builds porosity and fracture development and evolution models in different deposition environments, through core observation, casting thin section, SEM, porosity and permeability analysis, burial history analysis, and "four-property-relationships" analysis.
文摘The numerical modeling of oil displacement by nanofluid based on three-dimensional micromodel of cores with different permeability was carried out by the volume of fluid(VOF)method with experimentally measured values of interfacial tension,contact angle and viscosity.Water-based suspensions of SiO_(2) nanoparticles with a concentration of 0–1%and different particle sizes were considered to study the effect of concentration and size of nanoparticles,displacement fluid flow rate,oil viscosity and core permeability on the efficiency of oil displacement by nanofluid.The oil recovery factor(ORF)increases with the increase of mass fraction of nanoparticles.An increase in nanoparticles’concentration to 0.5% allows an increase in ORF by about 19% compared to water flooding.The ORF increases with the decrease of nanoparticle size,and declines with the increase of displacing rate.It has been shown that the use of nanosuspensions for enhanced oil recovery is most effective for low-permeable reservoirs with highly viscous oil in injection modes with capillary number close to the immobilization threshold,and the magnitude of oil recovery enhancement decreases with the increase of displacement speed.The higher the oil viscosity,the lower the reservoir rock permeability,the higher the ORF improved by nanofluids will be.
基金sponsored by the National Natural Science Foundation of China(No.41274129)National Science and Technology Major Project(No.2016ZX05026001-004)+2 种基金Key Research and Development Program of Sichuan Province(No.2020YFG0157)the 2018 Central Supporting Local Coconstruction Fund(No.80000-18Z0140504)the Construction and Development of Universities in 2019-Joint Support for Geophysics(Double First-Class center,80000-19Z0204).
文摘Coal rock is a type of dual-porosity medium,which is composed of matrix pores and fracture-cutting matrix.They play different roles in the seepage and storage capacity of coal rock.Therefore,constructing the micropore structure of coal rock is very important in the exploration and development of coalbed methane.In this study,we use a coal rock digital core and three-dimensional modeling to study the pore structure of coal rock.First,the micropore structure of coal rock is quantitatively analyzed using a two-dimensional thin-section image,and the quantitative information of the pore and fracture(cleat)structure in the coal rock is extracted.The mean value and standard deviation of the face porosity and pore radius are obtained using statistical analysis.The number of pores is determined using dichotomy and spherical random-packing methods based on compression.By combining with the results of the petrophysical analysis,the single-porosity structure model of the coal rock is obtained using a nonequal-diameter sphere to represent the pores of the coal rock.Then,an ellipsoid with an aspect ratio that is very much lesser than one is used to represent the fracture(cleat)in the coal rock,and a dual-pore structure model of the coal rock is obtained.On this basis,the relationship between the different pore aspect ratios and porosity is explored,and a fitting relationship is obtained.The results show that a nonlinear relationship exists between them.The relationship model can provide a basis for the prediction of coal rock pore structure and the pore structure parameters and provide a reference for understanding the internal structure of coalbed methane reservoirs.
文摘Microfiltration membrane technology has been widely used in various industries for solid-liquid separation. However, pore clogging remains a persistent challenge. This study employs (CFD) and discrete element method (DEM) models to enhance our understanding of microfiltration membrane clogging. The models were validated by comparing them to experimental data, demonstrating reasonable consistency. Subsequently, a parametric study was conducted on a cross-flow model, exploring the influence of key parameters on clogging. Findings show that clogging is a complex phenomenon affected by various factors. The mean inlet velocity and transmembrane flux were found to directly impact clogging, while the confinement ratio and cosine of the membrane pore entrance angle had an inverse relationship with it. Two clog types were identified: internal (inside the pore) and external (arching at the pore entrance), with the confinement ratio determining the type. This study introduced a dimensionless number as a quantitative clogging indicator based on transmembrane flux, Reynolds number, filtration time, entrance angle cosine, and confinement ratio. While this hypothesis held true in simulations, future studies should explore variations in clogging indicators, and improved modeling of clogging characteristics. Calibration between numerical and physical times and consideration of particle volume fraction will enhance understanding.