期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pore pressure fluctuations of overlying aquifer during residual coal mining and water-soil stress coupling analysis 被引量:1
1
作者 DONG Qing-hong SUI Wang-hua +1 位作者 ZHANG Xiao-cui MAO Zeng-min 《Mining Science and Technology》 EI CAS 2009年第5期648-652,共5页
Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. ... Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face. 展开更多
关键词 pore pressure fluctuations water-soil stress coupling analysis residual coal mining
下载PDF
Analysis of the relationship between water level fluctuation and seismicity in the Three Gorges Reservoir(China) 被引量:5
2
作者 Lifen Zhang Jinggang Li +3 位作者 Guichun Wei Wulin Liao Qiuliang Wang Chuanfang Xiang 《Geodesy and Geodynamics》 2017年第2期96-102,共7页
The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequen... The Three Gorges Reservoir is a good site for the further researches on reservoir induced seismicity due to decades' seismic monitoring. After the first water impounding in 2003, seismic activity becomes more frequent than that before water impoundment. In order to quantitatively study, the relationship between the water level fluctuation and earthquakes in TGR, we introduced statistical methods to attain the goal. First of all, we relocated the earthquakes in TGR region with double difference method and divided the earthquakes into 5 clusters with clustering analysis method. Secondly, to examine the impacts of water level fluctuation in different water filling stages on the seismic activity in the 5 clusters, a series of statistical analyses are applied. Pearson correlation results show that only the 175 m water level fluc- tuation has significantly positive impacts on the seismic activity in clusters I, II, III and V with correlation coefficients of 0.44, 0.38, 0.66 and 0.63. Cross-correlation analysis demonstrates that 0, ], 0 and 0 month time delay separately for the clusters I, II, III and V exists. It illustrated the influences of the water loading and pore pressure diffusion on induced earthquakes. Cointegration tests and impulse response analysis denoted that the 175 m water level only had long term and significant effects just on the seismic events in the intersection region of the Fairy Mount Fault and Nine-brook Fault. One standard deviation shock to 175 m water level increased the seismic activity in cluster V for the first 3 months, and then the negative influence was shown. After 7 months, the negative impulse response becomes stable. The long-term effect of the 175 m water impoundment also proved the important role of pore pressure diffusion in RIS with time. 展开更多
关键词 Three Gorges Reservoir Reservoir-induced seismicity Water level fluctuation Cross correlation Impulse response pore pressure diffusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部