期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Potential Vorticity Structure and Inversion of the Cyclogenesis Over the Yangtze River and Huaihe River Valleys 被引量:4
1
作者 赵兵科 吴国雄 姚秀萍 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第1期44-54,共11页
In this paper, the potential vorticity structure and inversion of the cyclogenesis over the Yangtze River and Huaihe River valleys during 21 23 June 2003 are investigated with a potential vorticity (PV) framework. T... In this paper, the potential vorticity structure and inversion of the cyclogenesis over the Yangtze River and Huaihe River valleys during 21 23 June 2003 are investigated with a potential vorticity (PV) framework. The cyclogenesis is manifested by a lower-tropospheric PV anomaly over the Yangtze River and Huaihe River valleys at early stages mainly due to latent heat release, which greatly affects the evolution of the associated lower-tropospheric geopotential height and wind fields as demonstrated by piecewise PV inversion. At later stages, an upper-tropospheric PV anomaly develops, resulting in the growth of ridges over the cyclone in both the upstream and downstream, which provide a favorable background field for the low-level cyclone development. But the effect of a surface thermal anomaly always impedes the development of the cyclone to different extents during this cyclogenesis. It is further demonstrated that the position and the strength of the PV anomaly are closely related to the low-level cyclone development, and the lower-tropospheric PV anomaly seems to constitute the most significant feature, for instance, contributing about 60% to the low-level jet (LLJ). 展开更多
关键词 potential vorticity anomaly potential vorticity inversion latent heat release low-level jet cyclogenesis
下载PDF
A Case Study on a Quasi-Stationary Meiyu Front Bringing About Continuous Rainstorms with Piecewise Potential Vorticity Inversion 被引量:3
2
作者 赵玉春 李泽椿 肖子牛 《Acta meteorologica Sinica》 SCIE 2008年第2期202-223,共22页
A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° lat... A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front band and the magnitude of the positive vorticity from the balanced wind is very close to that from real winds. The PV perturbation in the boundary layer is to a certain degree favorable for the formation and development of Meiyu front. In general, the lower boundary potential temperature perturbation is not beneficial to the formation and development, which is attributed to the relatively low surface temperature due to surface evaporation and solar short-wave radiation reduction shaded by clouds on the Meiyu front band, however, it has some diurnal variation. The effect of PV perturbation in the upper troposphere on the formation and development of the Meiuyu front is relatively weaker than others' and not beneficial to the formation and development of the Meiyu front, but it is enhanced in the period of Meiyu front's fast southward movement when the deep North China trough develops and moves southeastward. Rest PV perturbation unrelated to latent heat release in the middle-lower troposphere plays a certain role in the Meiyu front's fast southward movement. Lastly, it should be pointed out that the different PV perturbations maybe play a different role in different stages of the Meiyu front development. 展开更多
关键词 Meiyu front RAINSTORM PV potential vorticity inversion diabatic heating
下载PDF
A Survey of Unbalanced Flow Diagnostics and Their Application 被引量:23
3
作者 Fuqing Zhang Steven E. Koch Christopher A. Davis and Michael L. Kaplan 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第2期165-183,共19页
This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equatio... This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package. 展开更多
关键词 Unbalanced flow Geostrophic adjustment Gravity waves Nonlinear balance equation potential vorticity inversion Omega equations Rossby number
下载PDF
ON THE RELATIONSHIPS BETWEEN THE UNUSUAL TRACK OF TYPHOON MORAKOT(0908)AND THE UPPER WESTERLY TROUGH 被引量:2
4
作者 费建芳 李波 +1 位作者 黄小刚 程小平 《Journal of Tropical Meteorology》 SCIE 2012年第2期187-194,共8页
In this paper,by carrying out sensitivity tests of initial conditions and diagnostic analysis of physical fields,the impact factors and the physical mechanism of the unusual track of Morakot in the Taiwan Strait are d... In this paper,by carrying out sensitivity tests of initial conditions and diagnostic analysis of physical fields,the impact factors and the physical mechanism of the unusual track of Morakot in the Taiwan Strait are discussed and examined based on the potential vorticity(PV)inversion.The diagnostic results of NCEP data showed that Morakot's track was mainly steered by the subtropical high.The breaking of a high-pressure zone was the main cause for the northward turn of Morakot.A sensitivity test of initial conditions showed that the existence of upper-level trough was the leading factor for the breaking of the high-pressure zone.When the intensity was strengthened of the upper-level trough at initial time,the high-pressure zone would break ahead of time,leading to the early northward turn of Morakot.Conversely,when the intensity was weakened,the breaking of the high-pressure zone would be delayed.Especially,when the intensity was weakened to a certain extent,the high-pressure zone would not break.The typhoon,steered by the easterly flow to the south of the high-pressure zone,would keep moving westward,with no turn in the test.The diagnostic analysis of the physical fields based on the sensitivity test revealed that positive vorticity advection and cold advection associated with the upper-level trough weakened the intensity of the high-pressure zone.The upper-level trough affected typhoon's track indirectly by influencing the high-pressure zone. 展开更多
关键词 TYPHOON unusual track potential vorticity(PV)inversion upper-level trough
下载PDF
A Diagnostic and Numerical Study on a Rainstorm in South China Induced by a Northward-Propagating Tropical System 被引量:6
5
作者 赵玉春 李泽椿 肖子牛 《Acta meteorologica Sinica》 SCIE 2008年第3期284-302,共19页
A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-mov... A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-moving shear line from mid latitudes in the period of 21-22 May 2006, during which three strong mesoscale convective systems (MCSs) formed and brought about torrential rain or even cloudburst in South China. With the 1° ×1° NCEP (National Centers for Environment Prediction) reanalysis data and the Weather and Research Forecast (WRF) mesoscale model, a numerical simulation, a potential vorticity inversion analysis, and some sensitivity experiments are carried out to reveal the formation mechanism of this rainfall event. In the meantime, conventional observations, satellite images, and the WRF model outputs are also utilized to perform a preliminary dynamic and thermodynamic diagnostic analysis of the rainstorm systems. It is found that the torrential rain occurred in favorable synoptic conditions such as warm and moist environment, low lifting condensation level, and high convective instability. The moisture transport by strong southerly winds associated with the rapid northward advance of the cyclonic wind perturbation over the northern SCS provided the warm and moist condition for the formation of the excessive rain. Under the dynamic steering of a southwesterly flow ahead of a north trough and that on the southwest side of the West Pacific subtropical high, the mesoscale vortex (or the cyclonic wind perturbation), after its genesis, moved northward and brought about enormous rain in most parts of Guangdong Province through providing certain lifting forcing for the triggering of mesoscale convection. During the development of the mesoscale vortex, heavy rainfall was to a certain extent enhanced by the mesoscale topography of the Yunwu Mountain in Guangdong. The effect of the Yunwu Mountain is found to vary under different prevailing wind directions and intensities. The location of the heavy rainfall was in a degree determined by the trumpet-shaped topography of the Zhujiang Delta. It is identified that the topographic effect on precipitation depends on the relative position between the terrain and the mesoscale storm systems. The short distance from the SCS to South China facilitates the moisture transport, which offers ease for the heavy rain to form in South China. Finally, the role played by land-sea contrast in the fast intensification of the MCSs in South China is not yet clear, and the interaction between the MCSs and the mesoscale vortex needs to be clarified as well. 展开更多
关键词 rainstorm in South China mesoscale vortex TOPOGRAPHY potential vorticity inversion mesoscale convective system (MCS)
下载PDF
Adjoint Sensitivity Study on Idealized Explosive Cyclogenesis 被引量:2
6
作者 储可宽 张熠 《Journal of Meteorological Research》 SCIE CSCD 2016年第4期547-558,共12页
The adjoint sensitivity related to explosive cyclogenesis in a conditionally unstable atmosphere is investigated in this study.The PSU/NCAR limited-area,nonhydrostatic primitive equation numerical model MM5 and its ad... The adjoint sensitivity related to explosive cyclogenesis in a conditionally unstable atmosphere is investigated in this study.The PSU/NCAR limited-area,nonhydrostatic primitive equation numerical model MM5 and its adjoint system are employed for numerical simulation and adjoint computation,respectively.To ensure the explosive development of a baroclinic wave,the forecast model is initialized with an idealized condition including an idealized two-dimensional baroclinic jet with a balanced three-dimensional moderateamplitude disturbance,derived from a potential vorticity inversion technique.Firstly,the validity period of the tangent linear model for this idealized baroclinic wave case is discussed,considering different initial moisture distributions and a dry condition.Secondly,the 48-h forecast surface pressure center and the vertical component of the relative vorticity of the cyclone are selected as the response functions for adjoint computation in a dry and moist environment,respectively.The preliminary results show that the validity of the tangent linear assumption for this idealized baroclinic wave case can extend to 48 h with intense moist convection,and the validity period can last even longer in the dry adjoint integration.Adjoint sensitivity analysis indicates that the rapid development of the idealized baroclinic wave is sensitive to the initial wind and temperature perturbations around the steering level in the upstream.Moreover,the moist adjoint sensitivity can capture a secondary high sensitivity center in the upper troposphere,which cannot be depicted in the dry adjoint run. 展开更多
关键词 baroclinic wave explosive niidlatitude cyclone adjoint sensitivity potential vorticity inversion
原文传递
Balanced and Unbalanced Components of Moist Atmospheric Flows with Phase Changes
7
作者 Alfredo N.WETZEL Leslie M.SMITH +1 位作者 Samuel N.STECHMANN Jonathan E.MARTIN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2019年第6期1005-1038,共34页
Atmospheric variables(temperature, velocity, etc.) are often decomposed into balanced and unbalanced components that represent low-frequency and high-frequency waves, respectively. Such decompositions can be defined, ... Atmospheric variables(temperature, velocity, etc.) are often decomposed into balanced and unbalanced components that represent low-frequency and high-frequency waves, respectively. Such decompositions can be defined, for instance, in terms of eigenmodes of a linear operator. Traditionally these decompositions ignore phase changes of water since phase changes create a piecewise-linear operator that differs in different phases(cloudy versus non-cloudy). Here we investigate the following question: How can a balanced–unbalanced decomposition be performed in the presence of phase changes? A method is described here motivated by the case of small Froude and Rossby numbers,in which case the asymptotic limit yields precipitating quasi-geostrophic equations with phase changes. Facilitated by its zero-frequency eigenvalue, the balanced component can be found by potential vorticity(PV) inversion, by solving an elliptic partial differential equation(PDE), which includes Heaviside discontinuities due to phase changes. The method is also compared with two simpler methods: one which neglects phase changes, and one which simply treats the raw pressure data as a streamfunction. Tests are shown for both synthetic, idealized data and data from Weather Research and Forecasting(WRF) model simulations. In comparisons, the phase-change method and no-phase-change method produce substantial differences within cloudy regions, of approximately 5K in potential temperature, due to the presence of clouds and phase changes in the data. A theoretical justification is also derived in the form of a elliptic PDE for the differences in the two streamfunctions. 展开更多
关键词 potential vorticity inversion Moist atmospheric dynamics Slow-fast systems Balanced-unbalanced decomposition Elliptic partial differential equations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部