期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Temperature Sensitivity of Soil Respiration Probed by Numerical Analysis of Field-Observed Data Sets
1
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2023年第8期65-84,共34页
Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respi... Temperature sensitivity of soil respiration is essential to predict possible changes in terrestrial carbon budget on various scenarios about atmospheric and soil climates. Although it is often evaluated by using respiratory quotient “Q<sub>10</sub>”, Q<sub>10</sub> values of soil respiration seem to vary depending on methods or scales of evaluation. Aiming at probing how Q<sub>10</sub> values of soil respiration are evaluated differently for a field, this study used a model of soil respiration rate, and numerically evaluated soil respiration rates along depth by fitting the model to depth distributions of CO<sub>2</sub> concentration measured in a field. And temperature sensitivity of soil respiration rate was evaluated by comparing the determined soil respiration rates with atmospheric and soil temperatures measured in the field. The results showed that the relation between surface CO<sub>2</sub> emission rates and atmospheric temperatures was represented by lower Q<sub>10</sub> values than that between soil respiration rates and soil temperatures, presumably because the top soil layers had acclimatized in more extent to the existing thermal regime than the underlying deeper layers. Thus, for evaluating effects of long-term rise in atmospheric temperature on soil respiration, it is necessary to precisely predict the long-term change in depth distribution of soil temperature as well as to quantify temperature sensitivity of soil respiration along depth. The evaluated sensitivity of surface CO<sub>2</sub> emission rate to atmospheric temperature showed hysteresis, implying the needs for more knowledge about temperature sensitivity of soil respiration evaluated in both warming and cooling processes for better understandings and predictions about terrestrial carbon cycling. 展开更多
关键词 Air-Filled Porosity Inverse Analysis Mass Balance potentially maximum co2 production rate Soil Gas Diffusion Water Content
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部