期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Relationship between the Late Spring NAO and Summer Extreme Precipitation Frequency in the Middle and Lower Reaches of the Yangtze River 被引量:9
1
作者 TTIAN Bao-Qiang FAN Ke 《Atmospheric and Oceanic Science Letters》 2012年第6期455-460,共6页
The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an N... The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV. 展开更多
关键词 North Atlantic Oscillation summer extreme precipitation frequency the middle and lower reaches of the Yangtze River Valley East Asian westerly jet
下载PDF
SPATIO-TEMPORAL VARIATION CHARACTERISTICS OF EXTREMELY HEAVY PRECIPITATION FREQUENCY OVER SOUTH CHINA IN THE LAST 50 YEARS 被引量:2
2
作者 陆虹 陈思蓉 +2 位作者 郭媛 何慧 徐圣璇 《Journal of Tropical Meteorology》 SCIE 2014年第3期279-288,共10页
This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 200... This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests. 展开更多
关键词 South China frequency of extremely heavy precipitation events spatio-temporal characteristics abrupt change
下载PDF
Projection on precipitation frequency of different intensities and precipitation amount in the Lancang-Mekong River basin in the 21st century
3
作者 SUN Chang XIAO Zi-Niu Minh NGUYEN 《Advances in Climate Change Research》 SCIE CSCD 2021年第2期162-171,共10页
In the Lancang‒Mekong River basin(LMRB),agriculture,dominating the local economy,faces increasing challenges in water supply under climate change.The projection of future precipitation in this basin is essential for u... In the Lancang‒Mekong River basin(LMRB),agriculture,dominating the local economy,faces increasing challenges in water supply under climate change.The projection of future precipitation in this basin is essential for understanding the challenges.In this study,the Weather Research and Forecasting(WRF)model was applied to project the LMRB precipitation.Comparing with the historical period(1986e2005),we analyzed the changes of both the projected precipitation amount and the frequency of rainless(<0.1 mm d1),light rain(0.1e10 mm d1),moderate rain(10e25 mm d1),heavy rain(25e50 mm d1),rainstorm(50e100 mm d1),and heavy rainstorm(>100 mm d1)for three periods,namely the near-term(2016e2035),mid-term(2046e2065),and long-term(2080e2099).The results indicate that the precipitation amount during the wet season(AprileOctober)is expected to increase in most areas of the basin for the three periods.As for the precipitation during the dry season(NovembereMarch),an increase is projected in most areas for the near-term,while an increase in the lower reach of the basin and a decrease in the upper and middle reach for the mid-term and long-term.The precipitation reduction is expected to be greatest in Myanmar,Laos,Thailand,and Yunnan province of China for the mid-term.The frequency of precipitation in different intensities has prominent regional and temporal differences.During the wet season,the days of rainless and light rain are expected to decrease in the middle reach,whereas the days of rainstorm and heavy rainstorm increase.This feature is especially strong in southern Thailand,southern Laos and Cambodia in the near-term and in Laos and Thailand for the mid-term and long-term.During the dry season,there are projected increasing rainless days and decreasing days of precipitation for the other intensities in the middle reach,and opposite in the rest area of the basin.These projected precipitation changes have potential various impact in different parts of the basin.The middle reach would likely face increasing flood risks because of more days of rainstorm and heavy rainstorm,as well as more precipitation.Yunnan,Myanmar,Thailand and Laos would probably be the center of drought threatens during the dry season due to the increment of rainless days and the precipitation reduction.Besides,the seawater intrusion during the dry season in the near-term and mid-term would be more serious as a result of the precipitation decrease in southern Vietnam. 展开更多
关键词 precipitation projection Lancang‒Mekong River basin precipitation frequency precipitation amount precipitation intensity
原文传递
Precipitation changes in the mid-latitudes of the Chinese mainland during 1960–2014 被引量:5
4
作者 HU Yuling WANG Shigong +1 位作者 SONG Xuping WANG Jiaxin 《Journal of Arid Land》 SCIE CSCD 2017年第6期924-937,共14页
Based on daily precipitation data from 163 meteorological stations, this study investigated precipitation changes in the mid-latitudes of the Chinese mainland(MCM) during 1960–2014 using the climatic trend coeffici... Based on daily precipitation data from 163 meteorological stations, this study investigated precipitation changes in the mid-latitudes of the Chinese mainland(MCM) during 1960–2014 using the climatic trend coefficient, least-squared regression analysis, and a non-parametric Mann-Kendall test.According to the effects of the East Asian summer monsoon on the MCM and the climatic trend coefficient of annual precipitation during 1960–2014, we divided the MCM into the western MCM and eastern MCM. The western MCM was further divided into the western MCM1 and western MCM2 in terms of the effects of the East Asian summer monsoon. The main results were as follows:(1) During the last four decades of the 20^(th) century, the area-averaged annual precipitation presented a significant increasing trend in the western MCM, but there was a slight decreasing trend in the eastern MCM, where a seesaw pattern was apparent. However, in the 21^(st) century, the area-averaged annual precipitation displayed a significant increasing trend in both the western and eastern MCM.(2) The trend in area-averaged seasonal precipitation during 1960–2014 in the western MCM was consistent with that in the eastern MCM in winter and spring. However, the trend in area-averaged summer precipitation during1960–2014 displayed a seesaw pattern between the western and eastern MCM.(3) On an annual basis,both the trend in rainstorms and heavy rain displayed a seesaw pattern between the western and eastern MCM.(4) The precipitation intensity in rainstorms, heavy rain, and moderate rain made a greater contribution to changes in the total precipitation than precipitation frequency. The results of this study will improve our understanding of the trends and differences in precipitation changes in different areas of the MCM. This is not only useful for the management and mitigation of flood disasters, but is also beneficial to the protection of water resources across the MCM. 展开更多
关键词 precipitation changes the mid-latitudes of the Chinese mainland seesaw pattern rainy days precipitation intensity precipitation frequency
下载PDF
Intra-Annual Variability of Diurnal Cycle Precipitation over China from 1960–2000
5
作者 LIU Liang-Yu MA Zhu-Guo 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第6期451-456,共6页
Characteristics of diurnal cycle precipitation over China are investigated using twice-daily observations by the China Meteorological Administration during 1960–2000. Characteristics investigated include nighttime/da... Characteristics of diurnal cycle precipitation over China are investigated using twice-daily observations by the China Meteorological Administration during 1960–2000. Characteristics investigated include nighttime/daytime precipitation amount(PA), intensity, and frequency. Geographically, the region is separated into western and eastern China by the 110°E longitude. Our analysis shows that there generally is more night-time than daytime precipitation in western China, particularly in the Sichuan Basin. Over eastern China, the opposite holds true, particularly along the southeast coast. Regional average monthly daytime and night-time precipitation peaks in the same month for both western and eastern China. Over western China, monthly night-time precipitation is always greater than that during daytime, but the night-time precipitation frequency(PF) is only greater in non-summer(June–August) months. Over eastern China, daytime precipitation is greater than that in the night-time during the warm season(May–August) in both amount and frequency. The night-day difference(night-time minus daytime) in PA over western China is mainly influenced by precipitation intensity, while over eastern China the night-day difference in rainfall amount is mostly driven by PF. 展开更多
关键词 precipitation frequency precipitation intensity night-time precipitation daytime precipitation
下载PDF
Variation in Summer Rainfall in North China during the Period 1956-2007 and Links with Atmospheric Circulation 被引量:5
6
作者 梁丰 陶诗言 +1 位作者 卫捷 布和朝鲁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期363-374,共12页
Using gauge precipitation data and NCEP-NCAR reanalysis data, the interdecadal changes in summer precipitation during the period 1956-2007 in North China and the link with atmospheric circulation change over Eurasia a... Using gauge precipitation data and NCEP-NCAR reanalysis data, the interdecadal changes in summer precipitation during the period 1956-2007 in North China and the link with atmospheric circulation change over Eurasia are studied. Results show that precipitation amounts decreased by 16.2 mm per decade, which was attributable to a significant reduction in precipitation frequency. Contrary wave trains were found in the subtropical westerly jet (wave guide) over Eurasia for the wet and dry years of North China. When the wave trains had a ridge (trough) around the Korean Peninsula, conditions favored (disfavored) the westward and northward extension of the West Pacific subtropical high. The westward and northward extension of the West Pacific subtropical high is, and was, beneficial to rainfall in North China. The downstream propagation of Rossby waves was found to favor the maintenance of these wave trains. Sensible heating in the south of Lake Baikal and latent heating from the Korean Peninsula to the south of Japan increased during the period 1980-2007, as compared to that during 1957-1979. the wet period. These changes had positive influences on the maintenance of Anticyclonic-Cyclonic anomaly centers in the wave trains. Furthermore, northerly winds were prevalent in the lower troposphere during the dry period (1980-2007). which prohibited the transportation of water vapor to North China from the seas and thereby led to a decrease in rainfall in North China. The weakening of the Indian Monsoon during the dry period might be one of reasons for the reduction in water vapor transportation. 展开更多
关键词 North China precipitation frequency wave trains downstream development water vapor transportation latent heat sensible heat
下载PDF
Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas as derived from TRMM PR 被引量:11
7
作者 LIU Peng LI ChongYin +1 位作者 WANG Yu FU YunFei 《Science China Earth Sciences》 SCIE EI CAS 2013年第3期375-385,共11页
Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas are investigated based on the measurements of Tropical Rainfall Measuring Mission's(TRMM) Precipitation R... Climatic characteristics of convective and stratiform precipitation over the Tropical and Subtropical areas are investigated based on the measurements of Tropical Rainfall Measuring Mission's(TRMM) Precipitation Radar(PR) from 1998 to 2007.Results indicate that convective precipitation are distributed mainly over the Intertropical Convergence Zone(ITCZ),the South Pacific Convergence Zone(SPCZ),the Asian Monsoon Region,regions between the South America and the Mid-America,and the Tropical Africa where the frequencies lie between 1% and 2%.But in four seasons,total area fractions of convective precipitation frequencies less than 1% all exceed 85%.The frequencies of stratiform precipitation are much higher than those of convective precipitation,and total area fractions of stratiform precipitation frequencies >1% are over 55% during four seasons.However,frequencies of the two rain types show not only remarkable regionality,but also distinct seasonal variations.Conditional rain rates of convective precipitation range from 6 to 14 mm/h whereas those of stratiform precipitation are smaller than 4 mm/h.Meanwhile,rain tops of convective precipitation are higher than those of stratiform precipitation.The mean profiles of the two rain types show significant latitudinal dependency.And the seasonal variations of precipitation profiles are displayed mainly in the variations of rain tops.The frequencies and conditional rain rates of both rain types over ocean are higher than those over land,but rain tops are just the opposite.Moreover,the seasonal variations of both rain types over ocean are weaker than those over land because of the different stable states of underlying surfaces. 展开更多
关键词 convective precipitation stratiform precipitation precipitation frequency conditional rain rate vertical structure
原文传递
Decadal Variability of Extreme Precipitation Days over Northwest China from 1963 to 2012 被引量:2
8
作者 郭品文 张夏琨 +2 位作者 张书余 王春玲 张晓 《Journal of Meteorological Research》 SCIE 2014年第6期1099-1113,共15页
Daily precipitation data from 153 meteorological stations over Northwest China during summer from 1963 to 2012 were selected to analyze the spatiotemporal distribution of extreme summer precipitation frequency.The res... Daily precipitation data from 153 meteorological stations over Northwest China during summer from 1963 to 2012 were selected to analyze the spatiotemporal distribution of extreme summer precipitation frequency.The results show that the extreme precipitation frequency was regional dependent.Southern Gansu,northern Qinghai,and southern Shaanxi provinces exhibited a high extreme precipitation frequency and were prone to abrupt changes in the frequency.Northwest China was further divided into three sub-regions(northern,central,and southern) based on cluster analysis of the 50-yr extreme precipitation frequency series for each meteorological station.The extreme precipitation frequency changes were manifested in the northern region during the late 1970 s and in the central region from the end of the 1980 s to the 1990 s.The southern region fluctuated on a timescale of quasi-10 yr.This study also explored the mechanism of changes in extreme precipitation frequency.The results demonstrate that stratification stability,atmospheric water vapor content,and upward motion all affected the changes in extreme precipitation frequency. 展开更多
关键词 extreme precipitation frequency Northwest China stratification stability water vapor content atmospheric upward motion
原文传递
Seasonal Characteristics of Precipitation Occurrences in the Core Area of the Subtropical High 被引量:1
9
作者 冯沙 傅云飞 《Acta meteorologica Sinica》 SCIE 2009年第6期681-690,共10页
Based on the National Centers for Envioromental Prediction(NCEP)Reanalysis 2 daily data and the Global Precipitation Climatology Project(GPCP)1 Degree Daily(1DD)precipitation data from 1997 to 2006,seasonal char... Based on the National Centers for Envioromental Prediction(NCEP)Reanalysis 2 daily data and the Global Precipitation Climatology Project(GPCP)1 Degree Daily(1DD)precipitation data from 1997 to 2006,seasonal characteristics of precipitation occurring in the core area of the subtropical high(STH)were investigated by the frequency analysis method.The results indicate that precipitation occurs in the core area of the STH in each season,which is inconsistent with the common knowledge.In summer,there exists 40%–80%of the precipitation frequency in the STH,against less than 50%in other seasons.Generally,the seasonal mean rain rate inside the STH is about 1–2 mm day -1 in winter and less than 4 mm day -1 in summer,which contributes to about 30%–90%of the local total precipitation.In summer,such a contribution is about 50%–90%,and it is less than 40%in other seasons.Statistically,the occurrence frequency of the updraft within the core area of the STH varies from 25%to 75%in summer and less than 25%in other seasons. The results also reveal that there is about 30%of the STH frequency over the eastern China in summer, and the corresponding precipitation and updraft frequencies are 25%and 15%respectively.This is the so-called unique precipitation pattern in summer in eastern China,i.e.,precipitation is controlled by the core of the STH. Additionally,more than half of the precipitation occurring in the STH is accompanied with updraft at 500 hPa while less than half is with downdraft at 500 hPa.The former may represent deep precipitation whereas the latter may hint shallow precipitation in the core area of the STH. 展开更多
关键词 subtropical high(STH) precipitation updraft frequency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部