期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Trusted and Privacy-Preserving Carpooling Matching Scheme in Vehicular Networks 被引量:1
1
作者 Hongliang Sun Linfeng Wei +2 位作者 Libo Wang Juli Yin Wenxuan Ma 《Journal of Information Security》 2022年第1期1-22,共22页
With the rapid development of intelligent transportation, carpooling with the help of Vehicular Networks plays an important role in improving transportati<span>on efficiency and solving environmental problems. H... With the rapid development of intelligent transportation, carpooling with the help of Vehicular Networks plays an important role in improving transportati<span>on efficiency and solving environmental problems. However, attackers us</span>ually launch attacks and cause privacy leakage of carpooling users. In addition, the trust issue between unfamiliar vehicles and passengers reduces the efficiency of carpooling. To address these issues, this paper introduced a trusted and pr<span>ivacy-preserving carpooling matching scheme in Vehicular Networks (T</span>PCM). TPC<span>M scheme introduced travel preferences during carpooling matching, according to the passengers’ individual travel preferences needs, which adopt</span>ed th<span>e privacy set intersection technology based on the Bloom filter to match t</span>he passengers with the vehicles to achieve the purpose of protecting privacy an<span>d meeting the individual needs of passengers simultaneously. TPCM sch</span>eme adopted a multi-faceted trust management model, which calculated the trust val<span>ue of different travel preferences of vehicle based on passengers’ carp</span>ooling feedback to evaluate the vehicle’s trustworthiness from multi-faceted when carpooling matching. Moreover, a series of experiments were conducted to verify the effectiveness and robustness of the proposed scheme. The results show that the proposed scheme has high accuracy, lower computational and communication costs when compared with the existing carpooling schemes. 展开更多
关键词 Vehicular Networks Carpooling Matching Travel Preference Bloom Filter privacy Set Intersection Trust Management
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部