期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Multi-objective optimization of process parameters for ultra-narrow gap welding based on Universal Kriging and NSGA Ⅱ
1
作者 马生明 张爱华 +3 位作者 顾建军 漆宇晟 马晶 王平 《China Welding》 CAS 2023年第3期28-35,共8页
The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-af... The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process. 展开更多
关键词 ultra-narrow gap optimization of process parameters non-dominated sorting genetic algorithm II the sidewall fusion depth
下载PDF
Simulation Research on the Effect of Spreading Process Parameters on the Quality of Lunar Regolith Powder Bed in Additive Manufacturing
2
作者 Qi Tian Bing Luo 《Journal of Electronic Research and Application》 2023年第1期16-24,共9页
Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the ... Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the precision of molded parts.In this study,the discrete element method(DEM)was adopted to simulate the powder spreading process with a roller.The three powder bed quality indicators,including the molding layer offset,voidage fraction,and surface roughness,were established.Besides,the influence of the three process parameters,which are roller’s translational speed,rotational speed,and powder spreading layer thickness on the powder bed quality indicators was also analyzed.The results show that with the reduction of the powder spreading layer thickness and the increase of the rotational speed,the offset increased significantly;when the translational speed increased,the offset first increased and then decreased,which resulted in an extreme value;with the increase of the layer thickness and the decrease of the translational speed,the values for voidage fraction and surface roughness significantly reduced.The powder bed quality indicators were adopted as the optimization objective,and the multi-objective parameter optimization was carried out.The predicted optimal powder spreading parameters and powder bed quality indicators were then obtained.Moreover,the optimal values were then verified.This study can provide informative guidance for in-situ manufacturing at the moon in future deep space exploration missions. 展开更多
关键词 Lunar regolith additive manufacturing Numerical simulation of powder spreading process Discrete element method Powder spreading process parameters parameters optimization
下载PDF
Inherent relationship between process parameters,crystallization and mechanical properties of continuous carbon fiber reinforced PEEK composites 被引量:1
3
作者 Xiao-long Ma Li-hua Wen +3 位作者 Shi-yu Wang Jin-you Xiao Wen-hao Li Xiao Hou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期269-284,共16页
High-performance thermoplastic composites have been developed as significant structural materials for cutting-edge equipment in the aerospace and defence fields.However,the internal mechanism of processing parameters ... High-performance thermoplastic composites have been developed as significant structural materials for cutting-edge equipment in the aerospace and defence fields.However,the internal mechanism of processing parameters on mechanical properties in the manufacturing process of thermoplastic composite structures is still a serious challenge.The purpose of this study is to investigate the process/crystallization/property relationships for continuous carbon fiber(CF)reinforced polyether-ether-ketone(PEEK)composites.The composite laminates are fabricated according to orthogonal experiments via the thermoforming method.The mechanical performance is investigated in terms of crystallization properties and fracture morphology characterizations.Experimental results show that the mechanical performance and crystallization properties of thermoplastic composites are significantly affected by the coupling of processing parameters.The increased molding temperature,pressure,and holding time improve the degree of fiber/matrix infiltration and affect the crystallinity and crystalline morphology of the matrix,which further influences the mechanical properties of the composites.This is reflected in the test results that crystallinity has an approximately linear effect on mode-I interlaminar fracture toughness and transverse flexural modulus.As well as the higher molding temperature can destroy the pre-existent crystals to improve the toughness of the matrix,and the well-defined crystalline structures can be observed when fabricated at higher temperatures and longer periods of holding time. 展开更多
关键词 Polymer matrix composites THERMOPLASTIC processing parameters Mechanical properties CRYSTALLIZATION
下载PDF
Review of Design of Process Parameters for Squeeze Casting
4
作者 Jianxin Deng Bin Xie +1 位作者 Dongdong You Haibin Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期22-35,共14页
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic... Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed. 展开更多
关键词 Squeeze casting process parameter design process parameter optimization DATA-DRIVEN Neural network Research method analysis Literature analysis CITESPACE
下载PDF
Influence of process parameters and aging treatment on the microstructure and mechanical properties of Al Si8Mg3 alloy fabricated by selective laser melting 被引量:3
5
作者 Yaoxiang Geng Hao Tang +6 位作者 Junhua Xu Yu Hou Yuxin Wang Zhen He Zhijie Zhang Hongbo Ju Lihua Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第9期1770-1779,共10页
Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high M... Many studies have investigated the selective laser melting(SLM)of AlSi10Mg and AlSi7Mg alloys,but there are still lack of researches focused on Al-Si-Mg alloys specifically tailored for SLM.In this work,a novel high Mg-content AlSi8Mg3 alloy was specifically designed for SLM.The results showed that this new alloy exhibited excellent SLM processability with a lowest porosity of 0.07%.Massive lattice distortion led to a high Vickers hardness in samples fabricated at a high laser power due to the precipitation of Mg_(2)Si nanoparticles from theα-Al matrix induced by high-intensity intrinsic heat treatment during SLM.The maximum microhardness and compressive yield strength of the alloy reached HV(211±4)and(526±12)MPa,respectively.After aging treatment at 150℃,the maximum microhardness and compressive yield strength of the samples were further improved to HV(221±4)and(577±5)MPa,respectively.These values are higher than those of most known aluminum alloys fabricated by SLM.This paper provides a new idea for optimizing the mechanical properties of Al-Si-Mg alloys fabricated using SLM. 展开更多
关键词 AlSi8Mg3 alloy selective laser melting process parameters MICROSTRUCTURE aging treatment mechanical properties
下载PDF
Optimization of investment casting process parameters to reduce warpage of turbine blade platform in DD6 alloy 被引量:3
6
作者 Jia-wei Tian Kun Bu +5 位作者 Jin-hui Song Guo-liang Tian Fei Qiu Dan-qing Zhao Zong-li Jin Yang Li 《China Foundry》 SCIE 2017年第6期469-477,共9页
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at... The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm. 展开更多
关键词 PROCAST optimization of process parameters warping deformation of platform orthogonal test genetic algorithm BP-neural network
下载PDF
Influence of process parameters on microstructure of reactive plasma cladding TiC-Fe-Cr coating 被引量:2
7
作者 刘均波 王立梅 刘均海 《China Welding》 CAS 2021年第2期35-41,共7页
A certain amount of Ti was added to the plasma cladding Fe-Cr-C coating in the early stage in order to improve the quality and properties of the coating.Ti-Fe-Cr-C composite powder was prepared by precursor carbonizat... A certain amount of Ti was added to the plasma cladding Fe-Cr-C coating in the early stage in order to improve the quality and properties of the coating.Ti-Fe-Cr-C composite powder was prepared by precursor carbonization-composition process.In situ synthesized TiC-Fe-Cr coatings were fabricated on substrate of Q235 steel by plasma cladding process with the composite powder.Microstructures of the coatings with different process parameters,including cladding current,cladding speed,number of overlapping cladding layers,were analyzed by scanning electron microscope.The results show that the structure of the TiC-Fe-Cr coating is greatly affected by the cladding current,the cladding speed and the overlapping cladding process.In this test,when the cladding current of 300 A and the cladding process parameter of the cladding speed of 50 mm/min are clad with three layers,a well-formed and well-structured TiC-Fe-Cr coating can be obtained in this test.TiC-Fe-Cr coating has good wear resistance and good load characteristics under dry sliding wear test conditions. 展开更多
关键词 TiC-Fe-Cr coating plasma cladding process parameters MICROSTRUCTURE
下载PDF
Effect of process parameters on interfacial microstructure and mechanical properties of Al/Cu friction stir lap welding joints 被引量:1
8
作者 王晨霁 刘松 +2 位作者 朱浩 曹志龙 董少康 《China Welding》 CAS 2022年第4期48-58,共11页
In this study,friction stir lap welding(FSLW)was performed for the welding test of 6061 aluminium alloy and T2 pure copper.The effect of process parameters containing rotation rate and travel speed on interfacial micr... In this study,friction stir lap welding(FSLW)was performed for the welding test of 6061 aluminium alloy and T2 pure copper.The effect of process parameters containing rotation rate and travel speed on interfacial microstructure evolution and mechanical properties of Al/Cu dissimilar joints were explored.The experiments were carried out under the rotation rates of 600,900 and 1200 r/min and with the travel speeds of 30,70 and 100 mm/min.The characteristic of interface transition zones(ITZs)and the species of intermetallic compounds(IMCs)were investigated.The Al/Cu interface showed a layered structure composed of Al-Cu IMCs,which will affect the mechanical property.The layer consisting of Al2Cu was formed at lower heat input,and as heat input increased the Al4Cu9 phase started to form.Excessive heat input will increase the thickness of the interface and raise the brittleness of the joints.The thickness of the IMCs layers changed from0.89μm to 3.96μm as the heat input increased.The maximum value of tensile shear loading of 4.65 kN was obtained at the rotation rate of900 r/min and travel speed of 100 mm/min with the interface thickness of 2.89μm.The fracture mode of the joints was a mix of ductile and brittle fracture. 展开更多
关键词 friction stir lap welding Al/Cu dissimilar welding intermetallic compounds process parameters mechanical properties
下载PDF
Mesoscopic-Scale Numerical Investigation Including the Influence of Process Parameters on LPBF Multi-Layer Multi-Path Formation 被引量:1
9
作者 Liu Cao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期5-23,共19页
As a typical laser additive manufacturing technology,laser powder bed fusion(LPBF)has achieved demonstration applications in aerospace,biomedical and other fields.However,how to select process parameters quickly and r... As a typical laser additive manufacturing technology,laser powder bed fusion(LPBF)has achieved demonstration applications in aerospace,biomedical and other fields.However,how to select process parameters quickly and reasonably is still themain concern of LPBF production.In order to quantitatively analyze the influence of different process parameters(laser power,scanning speed,hatch space and layer thickness)on the LPBF process,the multilayer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM.Based on the design of experiments method,a four-factor three-level orthogonal test scheme was designed,and the porosity and surface roughness data of each calculation scheme were extracted.By analyzing the orthogonal test data,it was found that as the laser power increased,the porosity decreased,and as the scanning speed,hatch space,and layer thickness increased,the porosity increased.In addition,the influence of laser power and scanning speed on surface roughness showed a trend of decreasing first and then increasing,while the influence of scanning distance and layer thickness on surface roughness showed amonotonous increasing trend.The order of the influence of each process parameter on porosity was:scanning speed>laying thickness>laser power>hatch space,and the order of the influence of each process parameter on surface roughness was:hatch space>layer thickness>laser power>scanning speed.So the porosity of the part is most sensitive to scanning speed,and the surface roughness is the most sensitive to hatch space.The above conclusions are expected to provide process control basis for actual LPBF production of the 316L stainless steel alloy. 展开更多
关键词 Laser powder bed fusion process parameter porosity surface roughness orthogonal test method numerical simulation
下载PDF
Relationships between the surface quality of a single crystal copper ingot and the process parameters of a heated mould continuous casting method 被引量:1
10
作者 G.J.Xu Z.F.Ding +3 位作者 Y.T.Ding S.H.Kou G.L.Liu C.L.Feng 《China Foundry》 SCIE CAS 2004年第S1期62-66,共5页
The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated... The relationships between the surface quality of a single crystal copper ingot and the process parameters of heated mould continuous casting method were studied experimentally using our own design of horizontal heated mould continuous casting apparatus, and the mechanism by which process parameters affect the surface quality of a single crystal copper ingot is analyzed in the present paper. The results show that the process parameters affect the surface quality of a pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully within an appropriate range, which is determined through a series of experiments, in order to gain a single crystal copper ingot with good surface quality. 展开更多
关键词 heated mould continuous casting single crystal copper surface quality process parameter
下载PDF
Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing
11
作者 樊世龙 杨飞 +3 位作者 朱晓楠 刁兆炜 陈琳 荣命哲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第4期1-12,共12页
Here we develop a two-dimensional numerical model of wire and arc additive manufacturing(WAAM)to determine the relationship between process parameters and deposition geometry,and to reveal the influence mechanism of p... Here we develop a two-dimensional numerical model of wire and arc additive manufacturing(WAAM)to determine the relationship between process parameters and deposition geometry,and to reveal the influence mechanism of process parameters on deposition geometry.From the predictive results,a higher wire feed rate matched with a higher current could generate a larger and hotter droplet,and thus transfer more thermal and kinetic energy into melt pool,which results in a wider and lower deposited layer with deeper penetration.Moreover,a higher preheat temperature could enlarge melt pool volume and thus enhance heat and mass convection along both axial and radial directions,which gives rise to a wider and higher deposited layer with deeper penetration.These findings offer theoretical guidelines for the acquirement of acceptable deposition shape and optimal deposition quality through adjusting process parameters in fabricating WAAM components. 展开更多
关键词 additive manufacturing arc plasma process parameter deposition geometry numerical analysis
下载PDF
Improvement of titanium alloy TA19 fatigue life by submerged abrasive waterjet peening:Correlation of its process parameters with surface integrity and fatigue performance
12
作者 Gongyu WANG Shulei YAO +6 位作者 Yuxin CHI Chengcheng ZHANG Ning WANG Yalong CHEN Rongsheng LU Zhuang LI Xiancheng ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期377-390,共14页
Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process paramete... Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process parameters on surface integrity and fatigue life of titanium alloy TA19.SAWJP with different water pressures and standoff distances(SoDs)was conducted on the TA19 specimens.The surface integrity of the specimens before and after SAWJP with different process parameters was experimentally studied,including microstructure,surface roughness,microhardness,and compressive residual stress(CRS).Finally,fatigue tests of the specimens before and after SAWJP treatment with different process parameters were carried out at room temperature.The results highlighted that the fatigue life of the TA19 specimen can be increased by 5.46,5.98,and 6.28 times under relatively optimal process parameters,which is mainly due to the improved surface integrity of the specimen after SAWJP treatment.However,the fatigue life of specimens treated with improper process parameters is decreased by 0.55 to 0.69 times owing to the terrible surface roughness caused by the material erosion.This work verifies that SAWJP can effectively improve the surface integrity and fatigue life of workpieces,and reveals the relationship between process parameters,surface integrity,and fatigue life,which provides support for the promotion of SAWJP in the manufacturing fields. 展开更多
关键词 Fatigue testing process parameters Submerged abrasive waterjet peening Surface integrity Surface treatment Titanium alloy TA19
原文传递
Analysis and Optimization of the Electrohydraulic Forming Process of Sinusoidal Corrugation Tubes
13
作者 Da Cai Yinlong Song +2 位作者 Hao Jiang Guangyao Li Junjia Cui 《Fluid Dynamics & Materials Processing》 EI 2024年第4期873-887,共15页
Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic for... Aluminum alloy thin-walled structures are widely used in the automotive industry due to their advantages related to light weight and crashworthiness.They can be produced at room temperature by the electrohydraulic forming process.In the present study,the influence of the related parameters on the forming quality of a 6063 aluminum alloy sinusoidal corrugation tube has been assessed.In particular,the orthogonal experimental design(OED)and central composite design(CCD)methods have been used.Through the range analysis and variance analysis of the experimental data,the influence degree of wire diameter(WD)and discharge energy(DE)on the forming quality was determined.Multiple regression analysis was performed using the response surface methodology.A prediction model for the attaching-die state coefficient was established accordingly.The following optimal arrangement of parameters was obtained(WD=0.759 mm,DE=2.926 kJ).The attaching-die state coefficient reached the peak value of 0.001.Better optimized wire diameter and discharge energy for a better attaching-die state could be screened by CCD compared with OED.The response surface method in CCD was more suitable for the design and optimization of the considered process parameters. 展开更多
关键词 Electrohydraulic forming aluminum alloy tube process parameters attaching-die state 1 Introduction
下载PDF
Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy
14
作者 Tian-yu Liu Kun Shi +6 位作者 Jun Zhao Shi-bing Liu You-wei Zhang Hong-yu Liu Tian-yi Liu Xiao-ming Chen Xin-min Mei 《China Foundry》 SCIE CAS CSCD 2023年第1期49-56,共8页
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ... Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity. 展开更多
关键词 hot isostatic pressing processing parameters Ti60 titanium alloy DEFECTS composition uniformity microstructure mechanical properties
下载PDF
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
15
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3D printing baking process COOKIE quality analysis optimization of process parameter
下载PDF
A progressive approach to predict shot peening process parameters for forming integral panel of Al7050-T7451 被引量:3
16
作者 Chuang LIU Zhiyong ZHAO +1 位作者 Xianjie ZHANG Junbiao WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期617-627,共11页
In this paper,a progressive approach to predict the multiple shot peening process parameters for complex integral panel is proposed.Firstly,the invariable parameters in the forming process including shot size,mass flo... In this paper,a progressive approach to predict the multiple shot peening process parameters for complex integral panel is proposed.Firstly,the invariable parameters in the forming process including shot size,mass flow,peening distance and peening angle are determined according to the empirical and machine type.Then,the optimal value of air pressure for the whole shot peening is selected by the experimental data.Finally,the feeding speed for every shot peening path is predicted by regression equation.The integral panel part with thickness from 2 mm to 5 mm and curvature radius from 3200 mm to 16000 mm is taken as a research object,and four experiments are conducted.In order to design specimens for acquiring the forming data,one experiment is conducted to compare the curvature radius of the plate and stringer-structural specimens,which were peened along the middle of the two stringers.The most striking finding of this experiment is that the outer shape error range is below 3.9%,so the plate specimens can be used in predicting feeding speed of the integral panel.The second experiment is performed and results show that when the coverage reaches the limit of 80%,the minimum feeding speed is 50 mm/s.By this feeding speed,the forming curvature radius of the specimens with different thickness from the third experiment is measured and compared with the research object,and the optimal air pressure is 0.15 MPa.Then,the plate specimens with thickness from 2 mm to 5 mm are peened in the fourth experiment,and the measured curvature radius data are used to calculate the feeding speed of different shot peening path by regressive analysis method.The algorithm is validated by forming a test part and the average deviation is 0.496 mm.It is shown that the approach can realize the forming of the integral panel precisely. 展开更多
关键词 Curvature radius measure Integral panel process parameters prediction Regressive analysis method Shot peening process
原文传递
Hot deformation behavior and process parameters optimization of Ti-6Al-7Nb alloy using constitutive modeling and 3D processing map 被引量:1
17
作者 Ming-jun Zhong Ke-lu Wang +3 位作者 Shi-qiang Lu Xin Li Xuan Zhou Rui Feng 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第7期862-873,共12页
The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940... The isothermal compression test for Ti-6Al-7Nb alloy was conducted by using Gleeble-3800 thermal simulator.The hot deformation behavior of Ti-6Al-7Nb alloy was investigated in the deformation temperature ranges of 940-1030℃and the strain rate ranges of 0.001-10 s^(-1).Meanwhile,the activation energy of thermal deformation was computed.The results show that the flow stress of Ti-6Al-7Nb alloy increases with increasing the strain rate and decreasing the deformation temperature.The activation energy of thermal deformation for Ti-6Al-7Nb alloy is much greater than that for self-diffusion ofα-Ti andβ-Ti.Considering the influence of strain on flow stress,the strain-compensated Arrhenius constitutive model of Ti-6Al-7Nb alloy was established.The error analysis shows that the model has higher accuracy,and the correlation coefficient r and average absolute relative error are 0.9879 and 4.11%,respectively.The processing map(PM)of Ti-6Al-7Nb alloy was constructed by the dynamic materials model and Prasad instability criterion.According to PM and microstructural observation,it is found that the main form of instability zone is local flow,and the deformation mechanisms of the stable zone are mainly superplasticity and dynamic recrystallization.The optimal processing parameters of Ti-6Al-7Nb alloy are determined as follows:960-995℃/0.01-0.18 s^(-1)and 1000-1030℃/0.001-0.01 s^(-1). 展开更多
关键词 Ti-6Al-7Nb alloy Hot deformation behavior Strain-compensated Arrhenius constitutive model processing map process parameters optimization
原文传递
Automated process parameters tuning for an injection moulding machine with soft computing
18
作者 Peng ZHAO Jian-zhong FU +1 位作者 Hua-min ZHOU Shu-biao CUI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第3期201-206,共6页
In injection moulding production,the tuning of the process parameters is a challenging job,which relies heavily on the experience of skilled operators.In this paper,taking into consideration operator assessment during... In injection moulding production,the tuning of the process parameters is a challenging job,which relies heavily on the experience of skilled operators.In this paper,taking into consideration operator assessment during moulding trials,a novel intelligent model for automated tuning of process parameters is proposed.This consists of case based reasoning (CBR),empirical model (EM),and fuzzy logic (FL) methods.CBR and EM are used to imitate recall and intuitive thoughts of skilled operators,respectively,while FL is adopted to simulate the skilled operator optimization thoughts.First,CBR is used to set up the initial process parameters.If CBR fails,EM is employed to calculate the initial parameters.Next,a moulding trial is performed using the initial parameters.Then FL is adopted to optimize these parameters and correct defects repeatedly until the moulded part is found to be satisfactory.Based on the above methodologies,intelligent software was developed and embedded in the controller of an injection moulding machine.Experimental results show that the intelligent software can be effectively used in practical production,and it greatly reduces the dependence on the experience of the operators. 展开更多
关键词 Injection moulding machine (IMM) process parameters Case based reasoning (CBR) Empirical model (EM) Fuzzy logic (FL)
原文传递
Investigation of the Laser Powder Bed Fusion Process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy
19
作者 Changchun Zhang Tingting Liu +2 位作者 Wenhe Liao Huiliang Wei Ling Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期78-90,共13页
Laser powder bed fusion(LPBF)is an advanced manufacturing technology;however,inappropriate LPBF process parameters may cause printing defects in materials.In the present work,the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0... Laser powder bed fusion(LPBF)is an advanced manufacturing technology;however,inappropriate LPBF process parameters may cause printing defects in materials.In the present work,the LPBF process of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy was investigated by a two-step optimization approach.Subsequently,heat transfer and liquid flow behaviors during LPBF were simulated by a well-tested phenomenological model,and the defect formation mechanisms in the as-fabricated alloy were discussed.The optimized process parameters for LPBF were detected as laser power changed from 195 W to 210 W,with scanning speed of 1250 mm/s.The LPBF process was divided into a laser irradiation stage,a spreading flow stage,and a solidification stage.The morphologies and defects of deposited tracks were affected by liquid flow behavior caused by rapid cooling rates.The findings of this research can provide valuable support for printing defect-free metal components. 展开更多
关键词 Laser powder bed fusion Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy process parameters Heat transfer and liquid flow Defects
下载PDF
Influence of processing parameters and heat treatment on phase composition and microstructure of plasma sprayed hydroxyapatite coatings 被引量:2
20
作者 赵国亮 温广武 吴昆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期463-469,共7页
Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained co... Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings. 展开更多
关键词 hydroxyapatite coatings plasma spraying processing parameters heat treatment
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部