Transportation electrification is essential for decarbonizing transport. Currently, lithium-ion batteries are the primary power source for electric vehicles (EVs). However, there is still a significant journey ahead b...Transportation electrification is essential for decarbonizing transport. Currently, lithium-ion batteries are the primary power source for electric vehicles (EVs). However, there is still a significant journey ahead before EVs can establish themselves as the dominant force in the global automotive market. Concerns such as range anxiety, battery aging, and safety issues remain significant challenges.展开更多
In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train ...In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.展开更多
Scientific research frequently involves the use of computational tools and methods.Providing thorough documentation,open-source code,and data–the creation of reproducible computational research(RCR)–helps others und...Scientific research frequently involves the use of computational tools and methods.Providing thorough documentation,open-source code,and data–the creation of reproducible computational research(RCR)–helps others understand a researcher’s work.In this study,we investigate the state of reproducible computational research,broadly,and from within the field of prognostics and health management(PHM).In a text mining survey of more than 300 articles,we show that fewer than 1%of PHM researchers make their code and data available to others.To promote the RCR further,our work also highlights several personal benefits for those engaged in the practice.Finally,we introduce an open-source software tool,called PyPHM,to assist PHM researchers in accessing and preprocessing common industrial datasets.展开更多
The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes...The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes a three leveled digital twinmodel for the systematic PHMof PMSs.The unit-leveled digital twinmodel of each basic device unit of PMSs is constructed based on edge computing,which can provide real-time monitoring and analysis of the device status.The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters,which are deployed for the manufacturing execution on the fog server.The shop-leveled digital twin maintenancemodel is designed for production planning,which gives production instructions fromthe private industrial cloud server.To cope with the dynamic disturbances of a PMS,a big data-driven framework is proposed to control the three-level digital twin models,which contains indicator prediction,influence evaluation,and decisionmaking.Finally,a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs.The result demonstrates that the three-leveled digital twin model for the systematic PHM in PMSs works well in the system’s respects.展开更多
Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accide...Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.展开更多
In this paper, a data-driven prognostic model capable to deal with different sources of uncertainty is proposed. The main novelty factor is the application of a mathematical framework, namely a Random Fuzzy Variable (...In this paper, a data-driven prognostic model capable to deal with different sources of uncertainty is proposed. The main novelty factor is the application of a mathematical framework, namely a Random Fuzzy Variable (RFV) approach, for the representation and propagation of the different uncertainty sources affecting </span><span style="font-family:Verdana;">Prognostic Health Management (PHM) applications: measurement, future and model uncertainty. </span><span style="font-family:Verdana;">In this way, it is possible to deal not only with measurement noise and model parameters uncertainty due to the stochastic nature of the degradation process, but also with systematic effects, such as systematic errors in the measurement process, incomplete knowledge of the degradation process, subjective belief about model parameters. Furthermore, the low analytical complexity of the employed prognostic model allows to easily propagate the measurement and parameters uncertainty into the RUL forecast, with no need of extensive Monte Carlo loops, so that low requirements in terms of computation power are needed. The model has been applied to two real application cases, showing high accuracy output, resulting in a potential</span></span><span style="font-family:Verdana;">ly</span><span style="font-family:Verdana;"> effective tool for predictive maintenance in different industrial sectors.展开更多
Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electroni...Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.展开更多
Current research on Digital Twin(DT)based Prognostics and Health Management(PHM)focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring ...Current research on Digital Twin(DT)based Prognostics and Health Management(PHM)focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management.However,there still exist gaps in the seamless integration of DT and PHM,as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism.When the product experiences long-period degradation under load spectrum,it is challenging to describe the dynamic evolution of the health status and degradation progression accurately.In addition,DT update algorithms are difficult to be integrated simultaneously by current methods.This paper proposes an innovative dual loop DT based PHM framework,in which the first loop establishes the basic dynamic DT with multi-filed coupling,and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism.The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating.Furthermore,the Independence Principle for the abnormal detection is proposed to refine the theory of DT.Events at the first loop focus on accurate modeling of multi-field coupling,while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend.The interaction and collaboration between different loop models are also discussed.Finally,the Permanent Magnet Synchronous Motor(PMSM)is used to verify the proposed method.The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.展开更多
Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews ar...Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews are still continuously updated over time.In this paper,we browsed extensive literature related to battery PHM from 2018to 2023 and summarized advances in battery PHM field,including battery testing and public datasets,fault diagnosis and prediction methods,health status estimation and health management methods.The last topic includes state of health estimation methods,remaining useful life prediction methods and predictive maintenance methods.Each of these categories is introduced and discussed in details.Based on this survey,we accordingly discuss challenges left to battery PHM,and provide future research opportunities.This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners.展开更多
The scope of this paper is to provide an E2 Eperspective of health monitoring and management(HMM)and structural health mornitoring(SHM)as an integrated system element of an integrated system health monitoring and mana...The scope of this paper is to provide an E2 Eperspective of health monitoring and management(HMM)and structural health mornitoring(SHM)as an integrated system element of an integrated system health monitoring and management(ISHM)system.The paper will address two main topics:(1)The importance of a diagnostics and prognostic requirements specification to develop an innovative health monitoring and management system;(2)The certification of a health monitoring and management system aiming at a maintenance credit as an integral part of the maintenance strategies.The development of a maintenance program which is based on combinations of different types of strategies(preventive,condition-based maintenance(CBM)and corrective maintenance…)for different subsystems or components and structures of complex systems like an aircraft to achieve the most optimized solution in terms of availability,cost and safety/certification is a real challenge.The maintenance strategy must satisfy the technical-risk and cost feasibility of the maintenance program.展开更多
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse...The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.展开更多
Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operatio...Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.展开更多
文摘Transportation electrification is essential for decarbonizing transport. Currently, lithium-ion batteries are the primary power source for electric vehicles (EVs). However, there is still a significant journey ahead before EVs can establish themselves as the dominant force in the global automotive market. Concerns such as range anxiety, battery aging, and safety issues remain significant challenges.
基金supported by National Natural Science Foundation of China(U2268206,T2222015)Beijing Natural Science Foundation(4232031)+1 种基金Key Fields Project of DEGP(2021ZDZX1110)Shenzhen Science and Technology Program(CJGJZD20220517141801004).
文摘In view of class imbalance in data-driven modeling for Prognostics and Health Management(PHM),existing classification methods may fail in generating effective fault prediction models for the on-board high-speed train control equipment.A virtual sample generation solution based on Generative Adversarial Network(GAN)is proposed to overcome this shortcoming.Aiming at augmenting the sample classes with the imbalanced data problem,the GAN-based virtual sample generation strategy is embedded into the establishment of fault prediction models.Under the PHM framework of the on-board train control system,the virtual sample generation principle and the detailed procedures are presented.With the enhanced class-balancing mechanism and the designed sample augmentation logic,the PHM scheme of the on-board train control equipment has powerful data condition adaptability and can effectively predict the fault probability and life cycle status.Practical data from a specific type of on-board train control system is employed for the validation of the presented solution.The comparative results indicate that GAN-based sample augmentation is capable of achieving a desirable sample balancing level and enhancing the performance of correspondingly derived fault prediction models for the Condition-based Maintenance(CBM)operations.
文摘Scientific research frequently involves the use of computational tools and methods.Providing thorough documentation,open-source code,and data–the creation of reproducible computational research(RCR)–helps others understand a researcher’s work.In this study,we investigate the state of reproducible computational research,broadly,and from within the field of prognostics and health management(PHM).In a text mining survey of more than 300 articles,we show that fewer than 1%of PHM researchers make their code and data available to others.To promote the RCR further,our work also highlights several personal benefits for those engaged in the practice.Finally,we introduce an open-source software tool,called PyPHM,to assist PHM researchers in accessing and preprocessing common industrial datasets.
基金supported by the Fundamental Research Funds for The Central Universities(Grant No.2232021A-08)National Natural Science Foundation of China(GrantNo.51905091)Shanghai Sailing Program(Grand No.19YF1401500).
文摘The prognostics health management(PHM)fromthe systematic viewis critical to the healthy continuous operation of processmanufacturing systems(PMS),with different kinds of dynamic interference events.This paper proposes a three leveled digital twinmodel for the systematic PHMof PMSs.The unit-leveled digital twinmodel of each basic device unit of PMSs is constructed based on edge computing,which can provide real-time monitoring and analysis of the device status.The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters,which are deployed for the manufacturing execution on the fog server.The shop-leveled digital twin maintenancemodel is designed for production planning,which gives production instructions fromthe private industrial cloud server.To cope with the dynamic disturbances of a PMS,a big data-driven framework is proposed to control the three-level digital twin models,which contains indicator prediction,influence evaluation,and decisionmaking.Finally,a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs.The result demonstrates that the three-leveled digital twin model for the systematic PHM in PMSs works well in the system’s respects.
基金Fundamental Research Funds for the Central Universities,China(No.DUT17GF214)
文摘Condition monitoring is increasingly used to anticipate and detect failures of industrial machines.Failures of machines can cause high maintenance or replacement costs.If neglected,it may result in catastrophic accidents leading to production shrinkage.The potential failure would negatively affect the profitability of the company,including production shut down,cost of spare parts,cost of labor,damage of reputation,risk of injury to people and the environment.In recent years,condition-based maintenance( CBM) and prognostic and health management( PHM) are developed and formed a strong connection among science,engineering,computer,reliability,communication,management,etc.Computerized maintenance management systems( CMMS) store a lot of data regarding the fault diagnosis and life prediction of the machinery equipment.It's too necessary to uncover useful knowledge from the huge amount of data.It's vital to find the ways to obtain useful and concise information from these data.This information can be of great influence in the decision making of managers.This article is a review of intelligent approaches in machinery faults diagnosis and prediction based on PHM and CBM.
文摘In this paper, a data-driven prognostic model capable to deal with different sources of uncertainty is proposed. The main novelty factor is the application of a mathematical framework, namely a Random Fuzzy Variable (RFV) approach, for the representation and propagation of the different uncertainty sources affecting </span><span style="font-family:Verdana;">Prognostic Health Management (PHM) applications: measurement, future and model uncertainty. </span><span style="font-family:Verdana;">In this way, it is possible to deal not only with measurement noise and model parameters uncertainty due to the stochastic nature of the degradation process, but also with systematic effects, such as systematic errors in the measurement process, incomplete knowledge of the degradation process, subjective belief about model parameters. Furthermore, the low analytical complexity of the employed prognostic model allows to easily propagate the measurement and parameters uncertainty into the RUL forecast, with no need of extensive Monte Carlo loops, so that low requirements in terms of computation power are needed. The model has been applied to two real application cases, showing high accuracy output, resulting in a potential</span></span><span style="font-family:Verdana;">ly</span><span style="font-family:Verdana;"> effective tool for predictive maintenance in different industrial sectors.
文摘Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.
基金co-supported by the National Natural Science Foundation of China(Nos.U223321251875014)+1 种基金the Beijing Natural Science Foundation,China(No.L221008)the China Scholarship Council(No.202106020001).
文摘Current research on Digital Twin(DT)based Prognostics and Health Management(PHM)focuses on establishment of DT through integration of real-time data from various sources to facilitate comprehensive product monitoring and health management.However,there still exist gaps in the seamless integration of DT and PHM,as well as in the development of DT multi-field coupling modeling and its dynamic update mechanism.When the product experiences long-period degradation under load spectrum,it is challenging to describe the dynamic evolution of the health status and degradation progression accurately.In addition,DT update algorithms are difficult to be integrated simultaneously by current methods.This paper proposes an innovative dual loop DT based PHM framework,in which the first loop establishes the basic dynamic DT with multi-filed coupling,and the second loop implements the PHM and the abnormal detection to provide the interaction between the dual loops through updating mechanism.The proposed method pays attention to the internal state changes with degradation and interactive mapping with dynamic parameter updating.Furthermore,the Independence Principle for the abnormal detection is proposed to refine the theory of DT.Events at the first loop focus on accurate modeling of multi-field coupling,while the events at the second loop focus on real-time occurrence of anomalies and the product degradation trend.The interaction and collaboration between different loop models are also discussed.Finally,the Permanent Magnet Synchronous Motor(PMSM)is used to verify the proposed method.The results show that the modeling method proposed can accurately track the lifecycle performance changes of the entity and carry out remaining life prediction and health management effectively.
基金Supported by Tianjin Municipal Education Commission of China (Grant No. 2023KJ303)National Natural Science Foundation of China (Grant Nos. 12121002, 51975355)
文摘Prognostics and health management(PHM)has gotten considerable attention in the background of Industry 4.0.Battery PHM contributes to the reliable and safe operation of electric devices.Nevertheless,relevant reviews are still continuously updated over time.In this paper,we browsed extensive literature related to battery PHM from 2018to 2023 and summarized advances in battery PHM field,including battery testing and public datasets,fault diagnosis and prediction methods,health status estimation and health management methods.The last topic includes state of health estimation methods,remaining useful life prediction methods and predictive maintenance methods.Each of these categories is introduced and discussed in details.Based on this survey,we accordingly discuss challenges left to battery PHM,and provide future research opportunities.This research systematically reviews recent research about battery PHM from the perspective of key PHM steps and provide some valuable prospects for researchers and practitioners.
文摘The scope of this paper is to provide an E2 Eperspective of health monitoring and management(HMM)and structural health mornitoring(SHM)as an integrated system element of an integrated system health monitoring and management(ISHM)system.The paper will address two main topics:(1)The importance of a diagnostics and prognostic requirements specification to develop an innovative health monitoring and management system;(2)The certification of a health monitoring and management system aiming at a maintenance credit as an integral part of the maintenance strategies.The development of a maintenance program which is based on combinations of different types of strategies(preventive,condition-based maintenance(CBM)and corrective maintenance…)for different subsystems or components and structures of complex systems like an aircraft to achieve the most optimized solution in terms of availability,cost and safety/certification is a real challenge.The maintenance strategy must satisfy the technical-risk and cost feasibility of the maintenance program.
基金supported by the National Natural Science Foundation of China(51175502)
文摘The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level.
文摘Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.