Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhi...Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.展开更多
To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.Howeve...To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.展开更多
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol...A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.展开更多
The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining direct...The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.展开更多
The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based regio...The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.展开更多
The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and brak...The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse.However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent,which is worth studying. In this work, according to the formation of the Datong-Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system(TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged;the maximum coupler force of the combined train reduces by32.5% with the exhaust area increasing from 70% to 140%;when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.展开更多
For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
A novel combined model of the vibration control for the coupled flexiblesystem and its general mathematic description are developed. In presented model, active and passivecontrols as well as force and moment controls ...A novel combined model of the vibration control for the coupled flexiblesystem and its general mathematic description are developed. In presented model, active and passivecontrols as well as force and moment controls are combined into a single unit to achieve theefficient vibration control of the flexible structures by multi-approaches. Considering thecomplexity of the energy transmission in the vibrating system, the transmission channels of thepower flow transmitted into the foundation are discussed, and the general forces and thecorresponding velocities are combined into a single function, respectively. Under the controlstrategy of the minimum power flow, the transmission characteristics of the power flow areinvestigated. From the presented numerical examples, it is obvious that the analytical model iseffective, and both force and moment controls are able to depress vibration energy substantially.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
A kinematics and fuzzy logic combined formation controller was proposed for leader-follower based formation control using backstepping method in order to accommodate the dynamics of the robot.The kinematics controller...A kinematics and fuzzy logic combined formation controller was proposed for leader-follower based formation control using backstepping method in order to accommodate the dynamics of the robot.The kinematics controller generates desired linear and angular velocities for follower robots,which make the configuration of follower robots coverage to the desired.The fuzzy logic controller takes dynamics of the leader and followers into consideration,which is built upon Mamdani fuzzy model.The force and torque acting on robots are described as linguistic variables and also 25 if-then rules are designed.In addition,the fuzzy logic controller adopts the Centroid of Area method as defuzzification strategy and makes robots’actual velocities converge to the expected which is generated by the kinematics controller.The innovation of the kinematics and fuzzy logic combined formation controller presented in the paper is that the perfect velocity tracking assumption is removed and realtime performance of the system is improved.Compared with traditional torque-computed controller,the velocity error convergence time in case of the proposed method is shorter than traditional torque-computed controller.The simulation results validate that the proposed controller can drive robot members to form the desired formation and formation tracking errors which can coverage to a neighborhood of the origin.Additionally,the simulations also show that the proposed method has better velocity convergence performance than traditional torque-computed method.展开更多
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corr...In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.展开更多
The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can co...The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.展开更多
Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ...Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.展开更多
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata...Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.展开更多
The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsi...The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsion vibration in the case of special stimulated vibration is established. A design formula of anisotropic filament-wound cylinder to reduce the torsion vibration of axle components is obtained. The results indicate that by putting the filament-wound cylinder on an axis, the torsion vibration of the axis can be reduced effectively.展开更多
This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time dela...This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.展开更多
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i...Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.展开更多
[Objective] This study was conducted to screen a synergistic biological fungicide complex to control Fusarium wilt, reducing the use of chemical pesticides. [Method] The inhibitory effects of Bacil us subtilis DJ-6 an...[Objective] This study was conducted to screen a synergistic biological fungicide complex to control Fusarium wilt, reducing the use of chemical pesticides. [Method] The inhibitory effects of Bacil us subtilis DJ-6 and pyraclostrobin alone or in combination at five ratios against Fusarium oxysporum were detected by mea-suring mycelium growth rate in laboratory tests. The growth promotion and disease control effect of combined or single use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000, 1∶2 000 and 1∶3 000 dilutions were detected in field trials. [Result] The EC50 values of combined use of B. subtilis DJ-6 and pyra-clostrobin at ratios of 1∶1, 1∶2, 1∶3, 1∶4 and 1∶5 against F. oxysporum were 5.311 5, 4.008 6, 3.570 6, 3.350 9 and 3.218 9 μg/ml, with the synergistic ratios (SR) of 2.28, 1.77, 1.53, 1.64, 1.11, among which the synergetic effect at 1∶1 was the best. The fungicidal activity of pyraclostrobin was greater than that of B. subtilis DJ-6 in laboratory tests. Field trials revealed that al the 1∶1 000, 1∶2 000 and 1∶3 000 dilu-tions of 20% pyraclostrobin·2×1011 cfu/g B. subtilis DJ-6 WP in combination, 1∶1 000 dilution of 1 ×1012 cfu/g B. subtilis DJ-6 WP and 1∶2 000 dilution of 250 g/L pyra-clostrobin EC promoted the growth of strawberry by increasing plant height, leaf petiole, leaf blade area and stem diameter. Among them, the treatments with 1∶1 000 and 1∶2 000 of 20% pyraclostrobin · 2×1011 cfu/g B. subtilis DJ-6 WP in combina-tion had better effects than other treatments. The control effects of al the treat-ments were measured 30 and 80 d after fungicide application. The control effects of 1∶1 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combina-tion were up to 100% and 93.11%, which were higher than those in al other treat-ments. The second highest control effects were found in the treatment with 1∶ 2 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination, they were 92.49% and 86.49%, higher than those in other treatments except the 1∶1 000 dilution of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 in combination. The control effects of 1∶3 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination were 82.61% and 72.42%, higher than those in treatment with 1∶1 000 dilution of 1×1012 cfu/g B. subtilis DJ-6 WP, but lower than those in treat-ment with 1∶2 000 dilution of 25% pyraclostrobin EC. [Conclusion] Al the results re-vealed that the combination use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000 to 1∶2 000 dilution had better control effect against strawberry Fusarium wilt.展开更多
We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics...We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.展开更多
The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based c...The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.展开更多
基金Supported by National Excellent Natural Science Foundation of China(Grant No.52122503)Hebei Provincial Natural Science Foundation of China(Grant No.E2022203002)+2 种基金The Yanzhao’s Young Scientist Project of China(Grant No.E2023203258)Science Research Project of Hebei Education Department of China(Grant No.BJK2022060)Hebei Provincial Graduate Innovation Funding Project of China(Grant No.CXZZSS2022129).
文摘Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot.
基金funded by Jilin Province Science and Technology Development Plan Projects(20230508157RC)the National Natural Science Foundation of China(U2066208).
文摘To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.
基金This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010300).
文摘A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52074298 and 52204164)Fundamental Research Funds for the Central Universities(Grant No.2022XJSB03).
文摘The deformation control of surrounding rock in gobside roadway with thick and hard roof poses a significant challenge to the safety and efficiency of coal mining.To address this issue,a novel approach combining directional and non-directional blasting techniques,known as combined blasting,was proposed.This study focuses on the experimental investigation of the proposed method in the 122108 working face in Caojiatan Coal Mine as the engineering background.The initial phase of the study involves physical model experiments to reveal the underlying mechanisms of combined blasting for protecting gob-side roadway with thick and hard roof.The results demonstrate that this approach effectively accelerates the collapse of thick and hard roofs,enhances the fragmentation and expansion coefficient of gangue,facilitates the filling of the goaf with gangue,and provides support to the overlying strata,thus reducing the subsidence of the overlying strata above the goaf.Additionally,the method involves cutting the main roof into shorter beams to decrease the stress and disrupt stress transmission pathways.Subsequent numerical simulations were conducted to corroborate the findings of the physical model experiments,thus validating the accuracy of the experimental results.Furthermore,field engineering experiments were performed,affirming the efficacy of the combined blasting method in mitigating the deformation of surrounding rock and achieving the desired protection of the gob-side roadway.
基金supported by the Postdoctoral Science Foundation of China(Grant No.2020TQ0028)the National Natural Science Foundation of China(No.62173016)Beijing Natural Science Foundation,PRChina(No.4202038)。
文摘The region coverage control problem of multiple stratospheric airships system is firstly addressed in this paper.Towards it,we propose a two-layer control framework with the artificial potential field(APF)-based region coverage control law and the adaptive tracking control law.The APF-based region coverage control law ensures the coverage task is achieved until every single stratospheric airship ends up performing station keeping where near the respective global minimum point,in which an innovative solution to the local minimum problem is put forward.The adaptive tracking control law is designed to realize motion control using tracking the desired velocity and angular velocity given by coverage control law,with the consideration of several practical control problems as unknown individual differences and external disturbances.To save resources,the combined self-/event-triggered mechanism designed therein significantly reduces the times of state information transmission and control law calculation.The effectiveness of the proposed control framework is verified through simulations.
基金China National Railway Group Co.,Ltd(N2020J037).
文摘The 20,000-ton combined train running has greatly promoted China’s heavy-haul railway transportation capability. The application of controllable train-tail devices could improve the braking wave of the train and braking synchronism, and alleviate longitudinal impulse.However, the characteristics of the controllable train-tail device such as exhaust area, exhaust duration and exhaust action time are not uniform in practice, and their effects on the longitudinal impulse of the train are not apparent,which is worth studying. In this work, according to the formation of the Datong-Qinhuangdao Railway, the train air brake and longitudinal dynamics simulation system(TABLDSS) is applied to establish a 20,000-ton combined train model with the controllable train-tail device, and the braking characteristics and the longitudinal impulse of the train are calculated synchronously with changing the air exhaust time, exhaust area, and action lag time under initial braking. The results show that the maximum coupler force of the combined train will decrease with the extension of the continuous exhaust time, while the total exhaust time of the controllable train-tail device remains unchanged;the maximum coupler force of the combined train reduces by32.5% with the exhaust area increasing from 70% to 140%;when the lag time between the controllable train-tail device and the master locomotive is more than 1.5 s, the maximum coupler force of the train increases along with the time difference enlargement.
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
文摘A novel combined model of the vibration control for the coupled flexiblesystem and its general mathematic description are developed. In presented model, active and passivecontrols as well as force and moment controls are combined into a single unit to achieve theefficient vibration control of the flexible structures by multi-approaches. Considering thecomplexity of the energy transmission in the vibrating system, the transmission channels of thepower flow transmitted into the foundation are discussed, and the general forces and thecorresponding velocities are combined into a single function, respectively. Under the controlstrategy of the minimum power flow, the transmission characteristics of the power flow areinvestigated. From the presented numerical examples, it is obvious that the analytical model iseffective, and both force and moment controls are able to depress vibration energy substantially.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
基金Sponsored by the National Nature Science Foundation of China(Grant No.61105088)
文摘A kinematics and fuzzy logic combined formation controller was proposed for leader-follower based formation control using backstepping method in order to accommodate the dynamics of the robot.The kinematics controller generates desired linear and angular velocities for follower robots,which make the configuration of follower robots coverage to the desired.The fuzzy logic controller takes dynamics of the leader and followers into consideration,which is built upon Mamdani fuzzy model.The force and torque acting on robots are described as linguistic variables and also 25 if-then rules are designed.In addition,the fuzzy logic controller adopts the Centroid of Area method as defuzzification strategy and makes robots’actual velocities converge to the expected which is generated by the kinematics controller.The innovation of the kinematics and fuzzy logic combined formation controller presented in the paper is that the perfect velocity tracking assumption is removed and realtime performance of the system is improved.Compared with traditional torque-computed controller,the velocity error convergence time in case of the proposed method is shorter than traditional torque-computed controller.The simulation results validate that the proposed controller can drive robot members to form the desired formation and formation tracking errors which can coverage to a neighborhood of the origin.Additionally,the simulations also show that the proposed method has better velocity convergence performance than traditional torque-computed method.
基金Supported by Program for New Century Excellent Talents In University(NCET-12-0049)Beijing Natural Science Foundation(4132034)
文摘In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy.
文摘The Unified Power Quality Conditioner (UPQC) plays an important role in the constrained delivery of electrical power from the source to an isolated pool of load or from a source to the grid. The proposed system can compensate voltage sag/swell, reactive power compensation and harmonics in the linear and nonlinear loads. In this work, the off line drained data from conventional fuzzy logic controller. A novel control system with a Combined Neural Network (CNN) is used instead of the traditionally four fuzzy logic controllers. The performance of combined neural network controller compared with Proportional Integral (PI) controller and Fuzzy Logic Controller (FLC). The system performance is also verified experimentally.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha(Grant No.KQ2305025)。
文摘Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
文摘Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.
文摘The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsion vibration in the case of special stimulated vibration is established. A design formula of anisotropic filament-wound cylinder to reduce the torsion vibration of axle components is obtained. The results indicate that by putting the filament-wound cylinder on an axis, the torsion vibration of the axis can be reduced effectively.
基金National Natural Science Foundation of China (No.60674088)
文摘This paper offeres an exact study on the robust stability of a kind of combined integrating control system, and the robust stability belongs to the analysis of a kind of quasi-polynomial with two independent time delays. The parameters of stable space under time delay uncertainty are fixed after Rekasius transformation, and then a new cluster treatment of characteristic roots (CTCR) procedure is adopted to determine the stable space. By this strategy we find that the unstable space is not continuous and both Karitonov vertices theory and Edge theory are unable to be extended to quasi-polynomial under time delay uncertainty.
文摘Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.
基金Supported by Agricultural Science and Technology Research and Development Program of Jiangsu Province(BE2012378)Six Talent Peaks Project of Jiangsu Province(2013-NY-001)Agricultural Science and Technology Research and Development Program of Zhenjiang City(NY2014029)~~
文摘[Objective] This study was conducted to screen a synergistic biological fungicide complex to control Fusarium wilt, reducing the use of chemical pesticides. [Method] The inhibitory effects of Bacil us subtilis DJ-6 and pyraclostrobin alone or in combination at five ratios against Fusarium oxysporum were detected by mea-suring mycelium growth rate in laboratory tests. The growth promotion and disease control effect of combined or single use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000, 1∶2 000 and 1∶3 000 dilutions were detected in field trials. [Result] The EC50 values of combined use of B. subtilis DJ-6 and pyra-clostrobin at ratios of 1∶1, 1∶2, 1∶3, 1∶4 and 1∶5 against F. oxysporum were 5.311 5, 4.008 6, 3.570 6, 3.350 9 and 3.218 9 μg/ml, with the synergistic ratios (SR) of 2.28, 1.77, 1.53, 1.64, 1.11, among which the synergetic effect at 1∶1 was the best. The fungicidal activity of pyraclostrobin was greater than that of B. subtilis DJ-6 in laboratory tests. Field trials revealed that al the 1∶1 000, 1∶2 000 and 1∶3 000 dilu-tions of 20% pyraclostrobin·2×1011 cfu/g B. subtilis DJ-6 WP in combination, 1∶1 000 dilution of 1 ×1012 cfu/g B. subtilis DJ-6 WP and 1∶2 000 dilution of 250 g/L pyra-clostrobin EC promoted the growth of strawberry by increasing plant height, leaf petiole, leaf blade area and stem diameter. Among them, the treatments with 1∶1 000 and 1∶2 000 of 20% pyraclostrobin · 2×1011 cfu/g B. subtilis DJ-6 WP in combina-tion had better effects than other treatments. The control effects of al the treat-ments were measured 30 and 80 d after fungicide application. The control effects of 1∶1 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combina-tion were up to 100% and 93.11%, which were higher than those in al other treat-ments. The second highest control effects were found in the treatment with 1∶ 2 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination, they were 92.49% and 86.49%, higher than those in other treatments except the 1∶1 000 dilution of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 in combination. The control effects of 1∶3 000 dilution of 20% pyraclostrobin and 2×1011 cfu/g B. subtilis DJ-6 in combination were 82.61% and 72.42%, higher than those in treatment with 1∶1 000 dilution of 1×1012 cfu/g B. subtilis DJ-6 WP, but lower than those in treat-ment with 1∶2 000 dilution of 25% pyraclostrobin EC. [Conclusion] Al the results re-vealed that the combination use of 20% pyraclostrobin and 2 ×1011 cfu/g B. subtilis DJ-6 WP at 1∶1 000 to 1∶2 000 dilution had better control effect against strawberry Fusarium wilt.
文摘We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.
基金supported in part by the European Commission through the project P2P-Smartest:Peer to Peer Smart Energy Distribution Networks (H2020-LCE-2014-3,project 646469)
文摘The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.