Synapses are key structures in neural networks,and are involved in learning and memory in the central nervous system.Investigating synaptogenesis and synaptic aging is important in understanding neural development and...Synapses are key structures in neural networks,and are involved in learning and memory in the central nervous system.Investigating synaptogenesis and synaptic aging is important in understanding neural development and neural degeneration in diseases such as Alzheimer disease and Parkinson’s disease.Our previous study found that synaptogenesis and synaptic maturation were harmonized with brain development and maturation.However,synaptic damage and loss in the aging cerebellum are not well understood.This study was designed to investigate the occurrence of synaptic aging in the cerebellum by observing the ultrastructural changes of dendritic spines and synapses in cerebellar Purkinje cells of aging mice.Immunocytochemistry,Di I diolistic assays,and transmission electron microscopy were used to visualize the morphological characteristics of synaptic buttons,dendritic spines and synapses of Purkinje cells in mice at various ages.With synaptic aging in the cerebellum,dendritic spines and synaptic buttons were lost,and the synaptic ultrastructure was altered,including a reduction in the number of synaptic vesicles and mitochondria in presynaptic termini and smaller thin specialized zones in pre-and post-synaptic membranes.These findings confirm that synaptic morphology and function is disrupted in aging synapses,which may be an important pathological cause of neurodegenerative diseases.展开更多
In the present study, electrical stimulation to the rat insular cortex induced apnea or respiratory disturbance, reduced amplitude of genioglossal electromyogram, and decreased electromyogram integrals. In addition, a...In the present study, electrical stimulation to the rat insular cortex induced apnea or respiratory disturbance, reduced amplitude of genioglossal electromyogram, and decreased electromyogram integrals. In addition, arterial blood gas analysis showed arterial blood acidosis, reduced pH values, increased alkali reserve negative values, decreased peripheral blood 5-hydroxytryptamine content, and increased 5-hydroxytryptamine expression in cerebellar Purkinje cells. Following lidocaine injection to block the habenular nucleus, abnormalities in breath, genioglossal electromyogram, and blood gas values disappeared, and peripheral blood 5-hydroxytryptamine content returned to levels prior to electric stimulation. However, 5-hydroxytryptamine expression in cerebellar Purkinje cells remained high. The results suggested that 5-hydroxytryptamine expression in Purkinje cells did not correlate with ventilation function involving insular cortex and habenular nucleus.展开更多
The theorems for testing the local in one-port cellular neural/inear network (CNN) cells with four local state variables are presented. Using the theorems computes the bifurcation diagrams of the cardiac Purkinje f...The theorems for testing the local in one-port cellular neural/inear network (CNN) cells with four local state variables are presented. Using the theorems computes the bifurcation diagrams of the cardiac Purkinje fiber (CPE) equations Which describethe long-lasting action and pace-maker potentials of the Purkinje fiber of the heart. The computer simulation shows that periodic trajectories or convergent trajectories of the CPF Equations can be foun if the cormsponing cell Parameters are located in a positive domainbut nearby edge of chaos. In particular a heart with approximate normal frequency of heartbeat but non-normal electrocardiogram maysuddenly stop by slightly perturbing the parameters of the corresponding CPF Equations when the Paramders are located nearby the edge of chaos in the bifurcation diagrams. This research seems to interpret reasonbly the phenomena that patients with cardiac diseases might suddenly die without warning.展开更多
Plasticity of cerebellar Purkinje cells(PC)is influenced by progeste rone via the classical progeste rone receptors PR-A and PR-B by stimulating dendritogenesis,spinogenesis,and synaptogenesis in these cells.Dissociat...Plasticity of cerebellar Purkinje cells(PC)is influenced by progeste rone via the classical progeste rone receptors PR-A and PR-B by stimulating dendritogenesis,spinogenesis,and synaptogenesis in these cells.Dissociated PC cultures were used to analyze progeste rone effects at a molecular level on the voltage-gated T-type-Ca^(2+)-channels Ca_(v)3.1,Ca_(v)3.2,and Ca_(v)3.3 as they helped determine neuronal plasticity by regulating Ca^(2+)-influx in neuronal cells.The results showed direct effects of progesterone on the mRNA expression of T-type-Ca^(2+)-channels,as well as on the protein kinases A and C being involved in downstream signaling pathways that play an important role in neuronal plasticity.For the mRNA expression studies of T-type-Ca^(2+)-channels and protein kinases of the signaling cascade,laser microdissection and purified PC cultures of diffe rent maturation stages were used.Immunohistochemical staining was also performed to characte rize the localization of T-type-Ca^(2+)-channels in PC.Expe rimental progesterone treatment was performed on the purified PC culture for 24 and 48 hours.Our results show that progesterone increases the expression of Ca_(v)3.1 and Ca_(v)3.3 and associated protein kinases A and Cin PC at the mRNA level within 48 hours after treatment at latest.These effects extend the current knowledge of the function of progesterone in the central nervous system and provide an explanatory approach for its influence on neuronal plasticity.展开更多
The electrophysiological effects of 5.8×10<sup>-6</sup> mol/L propafenonewere studied in neonatal canine Purkinje fiber compared with changes in theadult canine. The method used was microelectrode tec...The electrophysiological effects of 5.8×10<sup>-6</sup> mol/L propafenonewere studied in neonatal canine Purkinje fiber compared with changes in theadult canine. The method used was microelectrode technique. This study sug-gests that Purkinje fibers are less sensitive to propafenone in the neonate than inthe adult, but at shorter ample lengths, the difference between them is not sig-nificant.展开更多
BACKGROUND: Tyrosine hydroxylase and phenylethanolamine-n-methyl transferase expression coexist in Purkinje cells of the rat cerebellum. Numerous reports have also been published addressing whether dopamine-beta-hydr...BACKGROUND: Tyrosine hydroxylase and phenylethanolamine-n-methyl transferase expression coexist in Purkinje cells of the rat cerebellum. Numerous reports have also been published addressing whether dopamine-beta-hydroxylase (DBH) expression exists in cerebellar Purkinje cells. OBJECTIVE: To investigate the coexistence of DBH and activator protein-2α expression in rat cerebellar Purkinje cells. DESIGN, TIME AND SETTING: A cell morphological study was performed at the Institute of Neuroscience, Chongqing Medical University, China in May 2007. MATERIALS: Ten healthy Wistar rats, of either gender, aged 14 weeks, served as experimental animals. Rabbit anti-mouse DBH, goat anti-mouse activator protein-2α and rabbit anti-mouse β-actin (Santa Cruz Biotechnology, Inc., USA), horseradish peroxidase-labeled goat anti-rabbit IgG, FITC-labeled mouse anti-rabbit IgG, and Cy3-labeled mouse anti-goat IgG (Boster, Wuhan, China), were used in this study. METHODS: Immunohistochemical staining was used to measure the expression of DBH or activator protein-2α, with double-label immunofluorescence being employed to determine coexpression of both, in the cerebellum of 5 randomly selected rats. Western blot assay was utilized to determine the expression of DBH and activator protein-2α in the cerebellum of the remaining 5 rats. MAIN OUTCOME MEASURES: Expression, localization and coexistence of DBH and activator protein-2α in the cerebellum were measured separately. RESULTS: Immunohistochemical staining demonstrated that cerebellar Purkinje cells stained positive for DBH and activator protein-2α. Western blot assay also demonstrated DBH and activator protein-2α expression in the cerebellum. Double-labeling immunofluorescence showed the coexistence of DBH and activator protein-2α in cerebellar Purkinje cells. CONCLUSION: Norepinephrine and activator protein-2α coexist in rat cerebellar Purkinje cells.展开更多
OBJECTIVE: The present study aimed at coordination and the estimate of the total investigating the effects of curcumin on the motor number of cerebellar Purkinje cells of adolescent Wistar rats exposed to ethanol. ME...OBJECTIVE: The present study aimed at coordination and the estimate of the total investigating the effects of curcumin on the motor number of cerebellar Purkinje cells of adolescent Wistar rats exposed to ethanol. METHODS: The total of 21 male Wistar rats aged 37 d old were divided into three groups, namely ethanol, ethanol-curcumin, and control groups. The ethanol group received 1.5 g/kg ethanol injected intraperitoneally and water given per oral; the ethanol-curcumin group received 1.5 g/kg ethanol injected intraperitoneally and curcumin extract given per oral; the control group received saline injection and oral water. The treatment was carried out daily for one month, after which the motor coordination performance of the rats was examined using revolving drum apparatus at test days 1, 8, and 15. The rats were finally sacrificed and the cerebellum of the rats was further processed for stereological analysis. The estimate of the total number of Purkinje cells was calculated using physical fractionator method. RESULTS: The ethanol-curcumin group performed better than both ethanol and control groups in the motor coordination ability at day 8 of testing (P〈 0.01). No Purkinje cell loss was observed as a result of one month intraperitoneal injection of ethanol. CONCLUSION: Curcumin may exert beneficial effects on the motor coordination of adolescent rats exposed to ethanol via undetermined hormetic mechanisms.展开更多
基金supported by the Science and Technology Projects of Henan Province of China,No.172102310001the Biology Advantage Discipline Fund of Henan Province of China
文摘Synapses are key structures in neural networks,and are involved in learning and memory in the central nervous system.Investigating synaptogenesis and synaptic aging is important in understanding neural development and neural degeneration in diseases such as Alzheimer disease and Parkinson’s disease.Our previous study found that synaptogenesis and synaptic maturation were harmonized with brain development and maturation.However,synaptic damage and loss in the aging cerebellum are not well understood.This study was designed to investigate the occurrence of synaptic aging in the cerebellum by observing the ultrastructural changes of dendritic spines and synapses in cerebellar Purkinje cells of aging mice.Immunocytochemistry,Di I diolistic assays,and transmission electron microscopy were used to visualize the morphological characteristics of synaptic buttons,dendritic spines and synapses of Purkinje cells in mice at various ages.With synaptic aging in the cerebellum,dendritic spines and synaptic buttons were lost,and the synaptic ultrastructure was altered,including a reduction in the number of synaptic vesicles and mitochondria in presynaptic termini and smaller thin specialized zones in pre-and post-synaptic membranes.These findings confirm that synaptic morphology and function is disrupted in aging synapses,which may be an important pathological cause of neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China, No. 30270502
文摘In the present study, electrical stimulation to the rat insular cortex induced apnea or respiratory disturbance, reduced amplitude of genioglossal electromyogram, and decreased electromyogram integrals. In addition, arterial blood gas analysis showed arterial blood acidosis, reduced pH values, increased alkali reserve negative values, decreased peripheral blood 5-hydroxytryptamine content, and increased 5-hydroxytryptamine expression in cerebellar Purkinje cells. Following lidocaine injection to block the habenular nucleus, abnormalities in breath, genioglossal electromyogram, and blood gas values disappeared, and peripheral blood 5-hydroxytryptamine content returned to levels prior to electric stimulation. However, 5-hydroxytryptamine expression in cerebellar Purkinje cells remained high. The results suggested that 5-hydroxytryptamine expression in Purkinje cells did not correlate with ventilation function involving insular cortex and habenular nucleus.
文摘The theorems for testing the local in one-port cellular neural/inear network (CNN) cells with four local state variables are presented. Using the theorems computes the bifurcation diagrams of the cardiac Purkinje fiber (CPE) equations Which describethe long-lasting action and pace-maker potentials of the Purkinje fiber of the heart. The computer simulation shows that periodic trajectories or convergent trajectories of the CPF Equations can be foun if the cormsponing cell Parameters are located in a positive domainbut nearby edge of chaos. In particular a heart with approximate normal frequency of heartbeat but non-normal electrocardiogram maysuddenly stop by slightly perturbing the parameters of the corresponding CPF Equations when the Paramders are located nearby the edge of chaos in the bifurcation diagrams. This research seems to interpret reasonbly the phenomena that patients with cardiac diseases might suddenly die without warning.
文摘Plasticity of cerebellar Purkinje cells(PC)is influenced by progeste rone via the classical progeste rone receptors PR-A and PR-B by stimulating dendritogenesis,spinogenesis,and synaptogenesis in these cells.Dissociated PC cultures were used to analyze progeste rone effects at a molecular level on the voltage-gated T-type-Ca^(2+)-channels Ca_(v)3.1,Ca_(v)3.2,and Ca_(v)3.3 as they helped determine neuronal plasticity by regulating Ca^(2+)-influx in neuronal cells.The results showed direct effects of progesterone on the mRNA expression of T-type-Ca^(2+)-channels,as well as on the protein kinases A and C being involved in downstream signaling pathways that play an important role in neuronal plasticity.For the mRNA expression studies of T-type-Ca^(2+)-channels and protein kinases of the signaling cascade,laser microdissection and purified PC cultures of diffe rent maturation stages were used.Immunohistochemical staining was also performed to characte rize the localization of T-type-Ca^(2+)-channels in PC.Expe rimental progesterone treatment was performed on the purified PC culture for 24 and 48 hours.Our results show that progesterone increases the expression of Ca_(v)3.1 and Ca_(v)3.3 and associated protein kinases A and Cin PC at the mRNA level within 48 hours after treatment at latest.These effects extend the current knowledge of the function of progesterone in the central nervous system and provide an explanatory approach for its influence on neuronal plasticity.
文摘The electrophysiological effects of 5.8×10<sup>-6</sup> mol/L propafenonewere studied in neonatal canine Purkinje fiber compared with changes in theadult canine. The method used was microelectrode technique. This study sug-gests that Purkinje fibers are less sensitive to propafenone in the neonate than inthe adult, but at shorter ample lengths, the difference between them is not sig-nificant.
基金the National Natural Science Foundation of China.No.30270437
文摘BACKGROUND: Tyrosine hydroxylase and phenylethanolamine-n-methyl transferase expression coexist in Purkinje cells of the rat cerebellum. Numerous reports have also been published addressing whether dopamine-beta-hydroxylase (DBH) expression exists in cerebellar Purkinje cells. OBJECTIVE: To investigate the coexistence of DBH and activator protein-2α expression in rat cerebellar Purkinje cells. DESIGN, TIME AND SETTING: A cell morphological study was performed at the Institute of Neuroscience, Chongqing Medical University, China in May 2007. MATERIALS: Ten healthy Wistar rats, of either gender, aged 14 weeks, served as experimental animals. Rabbit anti-mouse DBH, goat anti-mouse activator protein-2α and rabbit anti-mouse β-actin (Santa Cruz Biotechnology, Inc., USA), horseradish peroxidase-labeled goat anti-rabbit IgG, FITC-labeled mouse anti-rabbit IgG, and Cy3-labeled mouse anti-goat IgG (Boster, Wuhan, China), were used in this study. METHODS: Immunohistochemical staining was used to measure the expression of DBH or activator protein-2α, with double-label immunofluorescence being employed to determine coexpression of both, in the cerebellum of 5 randomly selected rats. Western blot assay was utilized to determine the expression of DBH and activator protein-2α in the cerebellum of the remaining 5 rats. MAIN OUTCOME MEASURES: Expression, localization and coexistence of DBH and activator protein-2α in the cerebellum were measured separately. RESULTS: Immunohistochemical staining demonstrated that cerebellar Purkinje cells stained positive for DBH and activator protein-2α. Western blot assay also demonstrated DBH and activator protein-2α expression in the cerebellum. Double-labeling immunofluorescence showed the coexistence of DBH and activator protein-2α in cerebellar Purkinje cells. CONCLUSION: Norepinephrine and activator protein-2α coexist in rat cerebellar Purkinje cells.
基金supported by Public Fund of the Faculty of Medicine, Universitas Gadjah Mada to Ginus Partadiredja
文摘OBJECTIVE: The present study aimed at coordination and the estimate of the total investigating the effects of curcumin on the motor number of cerebellar Purkinje cells of adolescent Wistar rats exposed to ethanol. METHODS: The total of 21 male Wistar rats aged 37 d old were divided into three groups, namely ethanol, ethanol-curcumin, and control groups. The ethanol group received 1.5 g/kg ethanol injected intraperitoneally and water given per oral; the ethanol-curcumin group received 1.5 g/kg ethanol injected intraperitoneally and curcumin extract given per oral; the control group received saline injection and oral water. The treatment was carried out daily for one month, after which the motor coordination performance of the rats was examined using revolving drum apparatus at test days 1, 8, and 15. The rats were finally sacrificed and the cerebellum of the rats was further processed for stereological analysis. The estimate of the total number of Purkinje cells was calculated using physical fractionator method. RESULTS: The ethanol-curcumin group performed better than both ethanol and control groups in the motor coordination ability at day 8 of testing (P〈 0.01). No Purkinje cell loss was observed as a result of one month intraperitoneal injection of ethanol. CONCLUSION: Curcumin may exert beneficial effects on the motor coordination of adolescent rats exposed to ethanol via undetermined hormetic mechanisms.