BACKGROUND The level of Ki-67 expression has served as a prognostic factor in gastric cancer.The quantitative parameters based on the novel dual-layer spectral detector computed tomography(DLSDCT)in discriminating the...BACKGROUND The level of Ki-67 expression has served as a prognostic factor in gastric cancer.The quantitative parameters based on the novel dual-layer spectral detector computed tomography(DLSDCT)in discriminating the Ki-67 expression status are unclear.AIM To investigate the diagnostic ability of DLSDCT-derived parameters for Ki-67 expression status in gastric carcinoma(GC).METHODS Dual-phase enhanced abdominal DLSDCT was performed preoperatively in 108 patients with gastric adenocarcinoma.Primary tumor monoenergetic CT attenuation value at 40-100 kilo electron volt(kev),the slope of the spectral curve(λ_(HU)),iodine concentration(IC),normalized IC(nIC),effective atomic number(Z^(eff))and normalized Z^(eff)(nZ^(eff))in the arterial phase(AP)and venous phase(VP)were retrospectively compared between patients with low and high Ki-67 expression in gastric adenocarcinoma.Spearman’s correlation coefficient was used to analyze the association between the above parameters and Ki-67 expression status.Receiver operating characteristic(ROC)curve analysis was performed to compare the diagnostic efficacy of the statistically significant parameters between two groups.RESULTS Thirty-seven and 71 patients were classified as having low and high Ki-67 expression,respectively.CT_(40 kev-VP),CT_(70 kev-VP),CT_(100 kev-VP),and Z^(eff)-related parameters were significantly higher,but IC-related parameters were lower in the group with low Ki-67 expression status than the group with high Ki-67 expression status,and other analyzed parameters showed no statistical difference between the two groups.Spearman’s correlation analysis showed that CT_(40 kev-VP),CT_(70 kev-VP),CT_(100 kev-VP),Z^(eff),and n Z^(eff) exhibited a negative correlation with Ki-67 status,whereas IC and nIC had positive correlation with Ki-67 status.The ROC analysis demonstrated that the multi-variable model of spectral parameters performed well in identifying the Ki-67 status[area under the curve(AUC)=0.967;sensitivity 95.77%;specificity 91.89%)].Nevertheless,the differentiating capabilities of singlevariable model were moderate(AUC value 0.630-0.835).In addition,the nZ_(VP)^(eff) and nIC_(VP)(AUC 0.835 and 0.805)showed better performance than CT_(40 kev-VP),CT_(70 kev-VP) and CT_(100 kev-VP)(AUC 0.630,0.631 and 0.662)in discriminating the Ki-67 status.CONCLUSION Quantitative spectral parameters are feasible to distinguish low and high Ki-67 expression in gastric adenocarcinoma.Z^(eff) and IC may be useful parameters for evaluating the Ki-67 expression.展开更多
Our expedition have identified location in the central part of Kosovo where were collected a samples (accessions) at coordinates; Sub-Locality SL-1 (N42°34′36″, E21°07′45″), altitude 574 m, SL-2 (N4...Our expedition have identified location in the central part of Kosovo where were collected a samples (accessions) at coordinates; Sub-Locality SL-1 (N42°34′36″, E21°07′45″), altitude 574 m, SL-2 (N42°34′29″, E 21°07′45″altitude 591 m and SL-3 (N42°34′30″, E21°07′46″) on altitude 565 m. The aim of present investigation was carried out to study genetic variability of quantitative and qualitative parameters. The populations from SL-2 were characterized of higher significance on seed oil (23.74%) and protein content (16.74%). The estimation average value of seed protein and oil content was 15.52% and 23.48% respectively. The variability of plant height ranged from 182.33 cm to as much as 200.89 cm, while distinction's between them were + 18.56 cm which was a significant higher at P〈0.05 probability level. The SL-3 showed the higher value of HWK (34.6 g), head per plant (39.33) and head diameter (9.5 cm) but, was characterized significantly lowest on seed protein content (13.99%). The all traits included in our investigations showed a higher genetic variability with majority of extreme values. The sunflower populations differed significantly in several parameters measured, they have a different genetic and morphological backgrounds. Results from wild sunflower form indicated notable differences in dispersion of important genes for different traits and showed the potential for using in future for breeding program.展开更多
It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the mi...It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.展开更多
Objective To investigate whether correlation existsbetween quantitative perfusion parameters obtained from dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)and different prognostic factors or immunohistoch...Objective To investigate whether correlation existsbetween quantitative perfusion parameters obtained from dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)and different prognostic factors or immunohistochemical subtypes of breast cancers.Methods A retrospective analysis of DCE-MRI was performed in展开更多
The deformation of coal is effected by thermal effect, pressures and tectonic stress, and the tectonic stress is the principal influence factor. However, the proposition of a useful quantitative index that responds to...The deformation of coal is effected by thermal effect, pressures and tectonic stress, and the tectonic stress is the principal influence factor. However, the proposition of a useful quantitative index that responds to the degree of deformation of coals quantitatively or semi-quantitatively has been a long-debated issue. The vitrinite reflectance ellipsoid, that is, the reflectance indication surface(RIS) ellipsoid is considered to be a strain ellipsoid that reflects the sum of the strain increment caused by stress in the process of coalification. It has been used to describe the degree of deformation of the coal, but the effect of the anisotropy on the RIS ellipsoid has not yet been considered with regards to non-structural factors. In this paper, Wei's parameter(ε) is proposed to express the deformation degree of the strain ellipsoid based on considering the combined influence of thermal effect, pressure and tectonic stress. The equation is as follows: ε=√[(ε_1-ε_0)~2+(ε_2-ε_0)~2+(ε_3-ε_0)~2]/3, where ε_1=lnR_(max), ε_2=lnR_(int), ε_3=lnR_(min), and ε_0=(ε_1+ε_2+ε_3)/3. Wei's parameter represents the distance from the surface to the spindle of the RIS logarithm ellipsoid; thus, the degree of deformation of the strain ellipsoid is indicated quantitatively. The formula itself, meanwhile, represents the absolute value of the degree of relative deformation and is consequently suitable for any type of deformation of the strain ellipsoid. Wei's parameter makes it possible to compare degrees of deformation among different deformation types of the strain ellipsoid. This equation has been tested in four types of coal: highly metamorphic but weakly deformed coal of the southern Qinshui Basin, highly metamorphic and strongly deformed coal from the Tianhushan coal mining area of Fujian, and medium metamorphic and weakly or strongly deformed coal from the Huaibei Coalfield. The results of Wei's parameters are consistent with the actual deformation degrees of the coal reservoirs determined by other methods, which supports the effectiveness of this method. In addition, Wei's parameter is an important complement to the indicators of the degrees of deformation of coals, which possess certain theoretical significance and practical values.展开更多
Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions b...Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.展开更多
文摘BACKGROUND The level of Ki-67 expression has served as a prognostic factor in gastric cancer.The quantitative parameters based on the novel dual-layer spectral detector computed tomography(DLSDCT)in discriminating the Ki-67 expression status are unclear.AIM To investigate the diagnostic ability of DLSDCT-derived parameters for Ki-67 expression status in gastric carcinoma(GC).METHODS Dual-phase enhanced abdominal DLSDCT was performed preoperatively in 108 patients with gastric adenocarcinoma.Primary tumor monoenergetic CT attenuation value at 40-100 kilo electron volt(kev),the slope of the spectral curve(λ_(HU)),iodine concentration(IC),normalized IC(nIC),effective atomic number(Z^(eff))and normalized Z^(eff)(nZ^(eff))in the arterial phase(AP)and venous phase(VP)were retrospectively compared between patients with low and high Ki-67 expression in gastric adenocarcinoma.Spearman’s correlation coefficient was used to analyze the association between the above parameters and Ki-67 expression status.Receiver operating characteristic(ROC)curve analysis was performed to compare the diagnostic efficacy of the statistically significant parameters between two groups.RESULTS Thirty-seven and 71 patients were classified as having low and high Ki-67 expression,respectively.CT_(40 kev-VP),CT_(70 kev-VP),CT_(100 kev-VP),and Z^(eff)-related parameters were significantly higher,but IC-related parameters were lower in the group with low Ki-67 expression status than the group with high Ki-67 expression status,and other analyzed parameters showed no statistical difference between the two groups.Spearman’s correlation analysis showed that CT_(40 kev-VP),CT_(70 kev-VP),CT_(100 kev-VP),Z^(eff),and n Z^(eff) exhibited a negative correlation with Ki-67 status,whereas IC and nIC had positive correlation with Ki-67 status.The ROC analysis demonstrated that the multi-variable model of spectral parameters performed well in identifying the Ki-67 status[area under the curve(AUC)=0.967;sensitivity 95.77%;specificity 91.89%)].Nevertheless,the differentiating capabilities of singlevariable model were moderate(AUC value 0.630-0.835).In addition,the nZ_(VP)^(eff) and nIC_(VP)(AUC 0.835 and 0.805)showed better performance than CT_(40 kev-VP),CT_(70 kev-VP) and CT_(100 kev-VP)(AUC 0.630,0.631 and 0.662)in discriminating the Ki-67 status.CONCLUSION Quantitative spectral parameters are feasible to distinguish low and high Ki-67 expression in gastric adenocarcinoma.Z^(eff) and IC may be useful parameters for evaluating the Ki-67 expression.
文摘Our expedition have identified location in the central part of Kosovo where were collected a samples (accessions) at coordinates; Sub-Locality SL-1 (N42°34′36″, E21°07′45″), altitude 574 m, SL-2 (N42°34′29″, E 21°07′45″altitude 591 m and SL-3 (N42°34′30″, E21°07′46″) on altitude 565 m. The aim of present investigation was carried out to study genetic variability of quantitative and qualitative parameters. The populations from SL-2 were characterized of higher significance on seed oil (23.74%) and protein content (16.74%). The estimation average value of seed protein and oil content was 15.52% and 23.48% respectively. The variability of plant height ranged from 182.33 cm to as much as 200.89 cm, while distinction's between them were + 18.56 cm which was a significant higher at P〈0.05 probability level. The SL-3 showed the higher value of HWK (34.6 g), head per plant (39.33) and head diameter (9.5 cm) but, was characterized significantly lowest on seed protein content (13.99%). The all traits included in our investigations showed a higher genetic variability with majority of extreme values. The sunflower populations differed significantly in several parameters measured, they have a different genetic and morphological backgrounds. Results from wild sunflower form indicated notable differences in dispersion of important genes for different traits and showed the potential for using in future for breeding program.
基金Projects(51474251,51874351)supported by the National Natural Science Foundation,China。
文摘It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.
文摘Objective To investigate whether correlation existsbetween quantitative perfusion parameters obtained from dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)and different prognostic factors or immunohistochemical subtypes of breast cancers.Methods A retrospective analysis of DCE-MRI was performed in
基金financial supported by National Natural Science Foundation of China(Nos.41372213,41030422)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA05030100)
文摘The deformation of coal is effected by thermal effect, pressures and tectonic stress, and the tectonic stress is the principal influence factor. However, the proposition of a useful quantitative index that responds to the degree of deformation of coals quantitatively or semi-quantitatively has been a long-debated issue. The vitrinite reflectance ellipsoid, that is, the reflectance indication surface(RIS) ellipsoid is considered to be a strain ellipsoid that reflects the sum of the strain increment caused by stress in the process of coalification. It has been used to describe the degree of deformation of the coal, but the effect of the anisotropy on the RIS ellipsoid has not yet been considered with regards to non-structural factors. In this paper, Wei's parameter(ε) is proposed to express the deformation degree of the strain ellipsoid based on considering the combined influence of thermal effect, pressure and tectonic stress. The equation is as follows: ε=√[(ε_1-ε_0)~2+(ε_2-ε_0)~2+(ε_3-ε_0)~2]/3, where ε_1=lnR_(max), ε_2=lnR_(int), ε_3=lnR_(min), and ε_0=(ε_1+ε_2+ε_3)/3. Wei's parameter represents the distance from the surface to the spindle of the RIS logarithm ellipsoid; thus, the degree of deformation of the strain ellipsoid is indicated quantitatively. The formula itself, meanwhile, represents the absolute value of the degree of relative deformation and is consequently suitable for any type of deformation of the strain ellipsoid. Wei's parameter makes it possible to compare degrees of deformation among different deformation types of the strain ellipsoid. This equation has been tested in four types of coal: highly metamorphic but weakly deformed coal of the southern Qinshui Basin, highly metamorphic and strongly deformed coal from the Tianhushan coal mining area of Fujian, and medium metamorphic and weakly or strongly deformed coal from the Huaibei Coalfield. The results of Wei's parameters are consistent with the actual deformation degrees of the coal reservoirs determined by other methods, which supports the effectiveness of this method. In addition, Wei's parameter is an important complement to the indicators of the degrees of deformation of coals, which possess certain theoretical significance and practical values.
基金supported by the Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201506002, CRA40: 40-year CMA global atmospheric reanalysis)the National Basic Research Program of China (Grant No. 2015CB953703)+1 种基金the Intergovernmental Key International S & T Innovation Cooperation Program (Grant No. 2016YFE0102400)the National Natural Science Foundation of China (Grant Nos. 41305052 & 41375139)
文摘Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain.