Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix...Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.展开更多
The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field th...The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.展开更多
The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe...The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe the most basic building blocks of matter and govern the universe. Despite the model’s great success in resolving many issues in particle physics but still has several setbacks and limitations. The model failed to incorporate the fourth force of gravity. It infers that all fermions and bosons are massless contrary to experimental facts. In addition, the model addresses neither the 95% of the universe’s energy of Dark Matter (DM) and Dark Energy (DE) nor the universe’s expansion. The Complex Field Theory (CFT) identifies DM and DE as complex fields of complex masses and charges that encompasses the whole universe, and pervade all matter. This presumption resolves the issue of failing to detect DM and DE for the last five decades. The theory also presents a model for the universe’s expansion and presumes that every material object carries a fraction of this complex field proportional to its mass. These premises clearly explain the physical nature of the gravitational force and its complex field and pave the way for gravity into the SM. On the other hand, to solve the issue of massless bosons and fermions in the SM, Higgs mechanism introduces a pure and abstractive theoretical model of unimaginable four potentials to generate fictitious bosons as mass donors to fermions and W± and Z bosons. The CFT in this paper introduces, for the first time, a physical explanation to the mystery of the mass formation of particles rather than Higgs’ pure mathematical derivations. The analyses lead to uncovering the mystery of electron-positron production near heavy nuclei and never in a vacuum. In addition, it puts a constraint on Einstein’s mass-energy equation that energy can never be converted to mass without the presence of dense dark matter and cannot be true in a vacuum. Furthermore, CFT provides different perspectives and resolves real-world physics concepts such as the nuclear force, Casimir force, Lamb’s shift, and the anomalous magnetic moment to be published elsewhere.展开更多
This paper is concerned with construction of quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters.The boson-fermion correspondence for these symmetric ...This paper is concerned with construction of quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters.The boson-fermion correspondence for these symmetric functions have been presented.In virtue of quantum fields,we derive a series of infinite order nonlinear integrable equations,namely,universal character hierarchy,symplectic KP hierarchy and symplectic universal character hierarchy,respectively.In addition,the solutions of these integrable systems have been discussed.展开更多
We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard m...We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.展开更多
In this article, we review our recent work on quantum phase transition in two-dimensional strongly correlated fermion systems. We discuss the metal insulator transition properties of these systems by calculating the d...In this article, we review our recent work on quantum phase transition in two-dimensional strongly correlated fermion systems. We discuss the metal insulator transition properties of these systems by calculating the density of states, double occupancy, and Fermi surface evolution using a com- bination of the cellular dynamical mean-field theory (CDMFT) and the continuous-time quantum Monte Carlo algorithm. Furthermore, we explore the magnetic properties of each state by defining magnetic order parameters. Rich phase diagrams with many intriguing quantum states, including antiferromagnetic metal, paramagnetic metal, Kondo metal, and ferromagnetic insulator, were found for the two-dimensional lattices with strongly correlated fermions. We believe that our results would lead to a better understanding of the properties of real materials.展开更多
文摘Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected.
文摘The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.
文摘The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe the most basic building blocks of matter and govern the universe. Despite the model’s great success in resolving many issues in particle physics but still has several setbacks and limitations. The model failed to incorporate the fourth force of gravity. It infers that all fermions and bosons are massless contrary to experimental facts. In addition, the model addresses neither the 95% of the universe’s energy of Dark Matter (DM) and Dark Energy (DE) nor the universe’s expansion. The Complex Field Theory (CFT) identifies DM and DE as complex fields of complex masses and charges that encompasses the whole universe, and pervade all matter. This presumption resolves the issue of failing to detect DM and DE for the last five decades. The theory also presents a model for the universe’s expansion and presumes that every material object carries a fraction of this complex field proportional to its mass. These premises clearly explain the physical nature of the gravitational force and its complex field and pave the way for gravity into the SM. On the other hand, to solve the issue of massless bosons and fermions in the SM, Higgs mechanism introduces a pure and abstractive theoretical model of unimaginable four potentials to generate fictitious bosons as mass donors to fermions and W± and Z bosons. The CFT in this paper introduces, for the first time, a physical explanation to the mystery of the mass formation of particles rather than Higgs’ pure mathematical derivations. The analyses lead to uncovering the mystery of electron-positron production near heavy nuclei and never in a vacuum. In addition, it puts a constraint on Einstein’s mass-energy equation that energy can never be converted to mass without the presence of dense dark matter and cannot be true in a vacuum. Furthermore, CFT provides different perspectives and resolves real-world physics concepts such as the nuclear force, Casimir force, Lamb’s shift, and the anomalous magnetic moment to be published elsewhere.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11965014 and 12061051)the National Science Foundation of Qinghai Province,China(Grant No.2021-ZJ-708)。
文摘This paper is concerned with construction of quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters.The boson-fermion correspondence for these symmetric functions have been presented.In virtue of quantum fields,we derive a series of infinite order nonlinear integrable equations,namely,universal character hierarchy,symplectic KP hierarchy and symplectic universal character hierarchy,respectively.In addition,the solutions of these integrable systems have been discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174169,11234007,and 51471093)
文摘We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.
基金I am so grateful for the great contribu- tions and beneficial communications from Yao-Hua Chen, Hai-Di Liu, and Heng-Fu Lin while I am preparing this review paper. This work was supported by the National Science Foundation of China (Grant Nos. 11174169, 11234007, and 51471093).
文摘In this article, we review our recent work on quantum phase transition in two-dimensional strongly correlated fermion systems. We discuss the metal insulator transition properties of these systems by calculating the density of states, double occupancy, and Fermi surface evolution using a com- bination of the cellular dynamical mean-field theory (CDMFT) and the continuous-time quantum Monte Carlo algorithm. Furthermore, we explore the magnetic properties of each state by defining magnetic order parameters. Rich phase diagrams with many intriguing quantum states, including antiferromagnetic metal, paramagnetic metal, Kondo metal, and ferromagnetic insulator, were found for the two-dimensional lattices with strongly correlated fermions. We believe that our results would lead to a better understanding of the properties of real materials.