期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
The Quantum Chromodynamics Gas Density Drop and the General Theory of Relativity Ether
1
作者 Rami Rom 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第2期445-454,共10页
β decay is one of the most fundamental and thoroughly studied nuclear decay. Surprisingly, the β decay rates were found to have a periodic time variability [1]. However, others argued that there is no evidence for s... β decay is one of the most fundamental and thoroughly studied nuclear decay. Surprisingly, the β decay rates were found to have a periodic time variability [1]. However, others argued that there is no evidence for such cyclic deviation from the exponential first order kinetics decay law [2]. Here we propose that the β decay is a pseudo-first order exchange reaction triggered by udd&utilde;exotic mesons and propose a QCD gas theory. In analogy to the atmospheric gas density, the proposed QCD gas density drops with elevation from the sun. Accordingly, we propose that the β decay rate periodic variability is due to the pseudo-first order exchange reaction kinetics and the QCD gas atmospheric density drop. The proposed QCD gas may be a possible candidate for Einstein’s general theory of relativity ether [3]. Our main results are the derived formulas for calculating the effective mass of the QCD gas and the cosmology perfect fluid equation of state dimensionless parameter, based on the measured ratio of the β decay rates at the earth trajectory aphelion and perihelion dates. . 展开更多
关键词 Nuclear Decay β Decay Rate Variability Atmospheric Density quantum Chromodynamics (QCD) Exotic Mesons general theory of relativity (GR) EtheR Dark Energy
下载PDF
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
2
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 general relativity quantum Mechanics Space Time Dark Matter A New Fundamental Constant “K”
下载PDF
Gravitational Waves Background, as Well as Some UFO, FRB and Supernova Flares, Are Due to Compressibility of the Spacetime (CoST)
3
作者 Evgeny A. Novikov 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期67-70,共4页
The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
关键词 Gravitational Wave Background quantum modification of the general relativity Compressibility of the Spacetime (CoST)
下载PDF
Quantum Gravity Based on Generalized Thermodynamics
4
作者 Sergei Yurievich Eremenko 《Journal of Applied Mathematics and Physics》 2023年第4期988-1028,共41页
This paper proposes a novel approach and simplified model of Quantum Gravity based on the unification framework of Generalized Thermodynamics which suggests cross-related terms and modified equations of General Relati... This paper proposes a novel approach and simplified model of Quantum Gravity based on the unification framework of Generalized Thermodynamics which suggests cross-related terms and modified equations of General Relativity and Quantum Mechanics. To address the “background problem”, a metric tensor is introduced into stationary Schrödinger equations via curved coordinates yielding quantum spacetime variation term. Then quantum Lagrangian is added to Einstein-Hilbert functional yielding quantum stress-energy tensor. Obtained from one variational principle, two theories are linked by a common quantum spacetime field. The theory offers some interpretations of the quantum vacuum spacetime fluctuations, zero-point-fields, quantum fields shifting towards high spacetime densities, the quantum nature of spacetime, and black hole singularity. 展开更多
关键词 quantum Gravity general relativity quantum Spacetime generalized thermodynamics Unified theory
下载PDF
A Comparison of New General System Theory Philosophy With Einstein and Bohr
5
作者 CUI Weicheng LI Rong PAN Lingli 《Journal of Philosophy Study》 2023年第1期1-22,共22页
The New General System theory was developed to be a theory of everything for complex systems within the world we can observe.This theory was constructed by supplementing a new mind-ether ontology into Bertalanffy’s g... The New General System theory was developed to be a theory of everything for complex systems within the world we can observe.This theory was constructed by supplementing a new mind-ether ontology into Bertalanffy’s general system theory framework.This theory is basically a generalization of classical mechanics rather than a revolution to it taken both by Einstein and Bohr in developing their relativity theory and quantum mechanics.The purpose of this paper is to reveal the reasons why Einstein and many others fail to unify relativity theory with quantum mechanics through comparing the main differences in philosophical opinions among NGST,Einstein,and Bohr.It is the hope of the authors that this clarification could speed up the unification process. 展开更多
关键词 complex system(CS) New general System theory(NGST) theory of everything(TOE) classical mechanics(CM) relativity theory(RT) quantum mechanics(QM) Bohmian Mechanics(BM) active force entanglement of minds
下载PDF
Glitching Pulsars: Unraveling the Interactions of General Relativistic and Quantum Fields in the Strong Field Regimes 被引量:1
6
作者 Ahmad A. Hujeirat Ravi Samtaney 《Journal of Modern Physics》 2019年第14期1696-1712,共17页
In this article we modify our previous model for the mechanisms underlying the glitch phenomena in pulsars. Accordingly, pulsars are born with embryonic cores that are made of purely incompressible superconducting glu... In this article we modify our previous model for the mechanisms underlying the glitch phenomena in pulsars. Accordingly, pulsars are born with embryonic cores that are made of purely incompressible superconducting gluon-quark superfluid (henceforth SuSu-cores). As the ambient medium cools and spins down due to emission of magnetic dipole radiation, the mass and size of SuSu-cores must grow discretely with time, in accordance with the Onsager-Feynmann analysis of superfluidity. Here we argue that the spacetime embedding glitching pulsars is dynamical and of bimetric nature: inside SuSu-cores the spacetime must be flat, whereas the surrounding region, where the matter is compressible and dissipative, the spacetime is Schwarzschild. It is argued here that the topological change of spacetime is derived by the strong nuclear force, whose operating length scales are found to increase with time to reach O (1) cm at the end of the luminous lifetimes of pulsars. The here-presented model is in line with the recent radio- and gravitational wave observations of pulsars and merger of neutron stars. 展开更多
关键词 relativity: Numerical general Black Hole Physics MAGNETARS Neutron Stars PULSARS SUPERFLUIDITY Superconductivity GLUONS QUARKS quantum CHROMODYNAMICS (QCD)
下载PDF
About the Conflicts between the Unitary Quantum Theory and the Special and General Relativity Theories
7
作者 Leo G. Sapogin V. A. Dzhanibekov +3 位作者 M. A. Moкulsky Yu. A. Ryabov Yu. P. Savin V. I. Utchastkin 《Journal of Modern Physics》 2015年第6期780-785,共6页
The authors discuss contradictions between the principal branches of the modern physical picture of the universe. Space and time have been shown in the Unitary Quantum Theory (UQT) not to be connected one with the oth... The authors discuss contradictions between the principal branches of the modern physical picture of the universe. Space and time have been shown in the Unitary Quantum Theory (UQT) not to be connected one with the other, unlike in the Special Theory of Relativity. In UQT, time becomes Newtonian again, and the growth of the particle’s mass with growing speed proceeds from other considerations of physics. Unlike the quantum theory, the modern gravitation theory (the general theory of relativity) is not confirmed by experiments and needs to be considerably revised. 展开更多
关键词 UNITARY quantum theory general relativity SPECIAL relativity Maxwell Equations LORENTZ TRANSFORMATIONS
下载PDF
How Quantum Mechanics and General Relativity Can Be Brought Together
8
作者 Martin Suda 《Journal of Modern Physics》 2016年第6期523-527,共5页
This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a... This paper describes an easy and teaching way how quantum mechanics (QM) and general relativity (GR) can be brought together. The method consists of formulating Schrödinger’s equation of a free quantum wave of a massive particle in curved space-time of GR using the Schwarzschild metric. The result is a Schrödinger equation of the particle which is automatically subjected to Newtons’s gravitational potential. 展开更多
关键词 quantum Mechanics Schrödinger Equation general relativity Newton’s Gravitational Potential Curved Space-Time Schwarzschild Metric Non-Euclidian Geometry
下载PDF
Non-Perturbative Guiding Center and Stochastic Gyrocenter Transformations:Gyro-Phase Is the Kaluza-Klein 5^(th) Dimension also for Reconciling General Relativity with Quantum Mechanics
9
作者 Claudio Di Troia 《Journal of Modern Physics》 2018年第4期701-752,共52页
The non perturbative guiding center transformation is extended to the relativistic regime and takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form: the gyrating particle a... The non perturbative guiding center transformation is extended to the relativistic regime and takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form: the gyrating particle and the guiding particle solutions, both in gyro-kinetic as in MHD orderings. Moreover, the presence of a gravitational field is also considered. The way to introduce the gravitational field is original and based on the Einstein conjecture on the feasibility to extend the general relativity theory to include electromagnetism by geometry, if applied to the extended phase space. In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness of the conservation of a magnetic moment, or the fact that the gyro-phase is treated as the non observable fifth dimension of the Kaluza-Klein model. Electrodynamics becomes non local, without the inconsistency of self-energy. Finally, the gyrocenter transformation is considered in the presence of stochastic e.m. fluctuations for explaining quantum behaviors via Nelson’s approach. The gyrocenter law of motion is the Schr&ouml;dinger equation. 展开更多
关键词 Guiding Center Transformation Gyrocenter Transformation KALUZA-KLEIN general relativity Higher Dimensions Stochastic quantum Mechanics Schrodinger Equation Lorentz’s Force Law
下载PDF
Hubble Tension versus the Cosmic Evolution of Hubble Parameter in the Unicentric Model of the Observable Universe
10
作者 Ahmad Hujeirat 《Journal of Modern Physics》 CAS 2023年第3期183-197,共15页
Recently, a unicentric model of the observable universe (UNIMOUN) was proposed. Accordingly, big bangs are common events in our infinitely large, flat, homogeneous and isotropic parent universe. Their progenitors are ... Recently, a unicentric model of the observable universe (UNIMOUN) was proposed. Accordingly, big bangs are common events in our infinitely large, flat, homogeneous and isotropic parent universe. Their progenitors are clusters of cosmically dead and massive neutron stars that merged after reaching the ultimate lowest quantum energy state, where the matter is in an incompressible superconducting gluon-quark superfluid state and zero-entropy, hence granting the resulting progenitors measurable sizes and immunity to collapsing into black holes. Our big bang happened to occur in our neighbourhood, thereby enduing the universe, the observed homogeneity and isotropy. As the enclosed mass of the progenitor was finite, the dynamically expanding curved spacetimes embedded the fireball started flattening to finally diffuse into the flat spacetime of the parent universe. By means of general relativistic numerical hydrodynamical calculations, we use the H-metric to follow the time-evolution of the spacetime embedding the progenitor during the hadronization and the immediately following epochs. Based thereon, we find that the kinetic energy of newly created normal matter increases with distance in a self-similar manner, imitating thereby outflows of nearly non-interacting particles. On cosmic time scales, this behaviour yields a Hubble parameter, H(t), which decreases slowly with the distance from the big bang event. Given the sensitivity of the data of the Cosmic Microwave Background (CMB) from Planck to the underlying cosmological model, we conclude that UNIMOUN is a viable alternative to ΛCMD-cosmologies. 展开更多
关键词 general relativity: Big Bang Black Holes QUASARS Neutron Stars quantum Chromodynamics Condensed Matter INCOMPRESSIBILITY SUPERFLUIDITY Super-Conductivity
下载PDF
Re-examination of the Two-Body Problem Using Our New General System Theory 被引量:2
11
作者 PAN Lingli CUI Weicheng 《Journal of Philosophy Study》 2021年第12期891-913,共23页
It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects... It is well-known that philosophical conflicts exist among classical mechanics,quantum mechanics and relativistic mechanics.In order to use the framework of general system theory to unify these three mechanics subjects,a new general system theory is developed based on a new ontology of ether and minds as the fundamental existences in the world.The two-body problem is the simplest model in mechanics and in this paper,it is re-examined by using our new general system theory.It is found that the current description of the classical full two-body problem is inappropriate since the observer and the measurement apparatus have not been explicitly considered.After considering these,it is actually a three-body problem while only the special case of the Kepler problem is the two-body problem.By introducing the concepts of psychic force and psychic field,all the possible movement states in the two-body problem can be explained within the framework of classical mechanics.There is no need to change the meanings of many fundamental concepts,such as time,space,matter,mass,and energy as done in quantum mechanics and relativity theory.This points out a new direction for the unification of different theories. 展开更多
关键词 two-body problem new general system theory gravitational field psychic field classical mechanics quantum mechanics relativity theory
下载PDF
Particle Physics Problems Addressed with Simple Mathematics Related to General Relativity
12
作者 T. R. Mongan 《Journal of Modern Physics》 2021年第3期254-259,共6页
Existing particle physics models do not account for dark matter and neutrino mass, or explain the three generations of fundamental fermions. This analysis uses simple mathematics, related to general relativity, to add... Existing particle physics models do not account for dark matter and neutrino mass, or explain the three generations of fundamental fermions. This analysis uses simple mathematics, related to general relativity, to address these problems. The paper does <em>not</em> address the very difficult problem of quantizing general relativity. 展开更多
关键词 quantum Mechanics general relativity Standard Model
下载PDF
Completing the Standard Model with Gravity by General Relativizing Quantum Physics (RQP) (Coupling Spin-2 Gravitons with Spin-0 Particles to Generate Higgs Mass)
13
作者 Walter James Christensen Jr. 《Journal of Modern Physics》 2015年第13期1969-1985,共17页
After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravar... After a straightforward general relativistic calculation on a modified flat-spacetime metric (developed from the fluctuating vacuum energy interacting with a graviton field), a pair of n-valued covariant and contravariant energy momentum tensors emerged analogous to quantized raising and lower operators. Detaching these operators from the general relativistic field equations, and then transporting them to act on extreme spacetimes, these operators were able to generate fundamental particle boson masses. In particular, the operators precisely generated Higgs mass. Then by applying a consistency approach to the gravitational field equations—similar to how Maxwell applied to the electromagnetic ones—it allowed for the coupling of spin-to-mass, further restricting the particle mass to be in precise agreement with CODATA experimental values. Since this is a massless field approach integrated discretely with a massive one, it overcomes various renormalizing difficulties;moreover it solves the mass hierarchal problem of the Standard Model of particle physics, and generates its spin and therefore shows quantum physics to be a subset of General Relativity, just as Einstein had first imagined. 展开更多
关键词 Standard Model Particle PHYSICS general relativity Geometric PARTICLES Higgs MASS Relativized quantum PHYSICS RQP Graviton Gravitational Lagrangian Consistency Formulation for GRAVITY MASS Hierarchal Problem
下载PDF
Scalar Field Model Provides a Possible Bridge between General Relativity and Quantum Mechanics
14
作者 Rickey W. Austin 《International Journal of Astronomy and Astrophysics》 2022年第3期247-257,共11页
Herein is introduced a simple scalar field model derived from classical based kinetic energy, gravitational potential energy, and Special Relativity’s rest mass energy. By applying a classical orbit over the scalar f... Herein is introduced a simple scalar field model derived from classical based kinetic energy, gravitational potential energy, and Special Relativity’s rest mass energy. By applying a classical orbit over the scalar field, relativistic effects are predicted. The scalar field is then applied to a classical model of the Hydrogen atom resulting in a relativistic effect equal to the binding energy of the Hydrogen atom. In addition, the model derives the fine structure constant due to the gravitational effect. The relativistic effects are then discretized in increments equal to the model’s gravitational induced constant. The discretization produces the Hydrogen atom spectral emissions and an angular momentum equal to Planck’s reduced constant. The model is not presented as a replacement for current theory, rather it is for inspection and illustration of how a simplistic model may offer a fundamental bridge between the more complex, time proven theories of General Relativity and Quantum Mechanics. 展开更多
关键词 general relativity quantum Mechanics Hydrogen Atom Fine Structure Con-stant Planck’s Constant
下载PDF
Does Our Universe Conform with the Existence of a Universal Maximum Energy-Density <i>p<sub>max</sub><sup style="margin-left:-30px;">uni</sup></i> 被引量:1
15
作者 A. A. Hujeirat 《Journal of Modern Physics》 2021年第7期937-958,共22页
Recent astronomical observations of high redshift quasars, dark matter-dominated galaxies, mergers of neutron stars, glitch phenomena in pulsars, cosmic microwave background and experimental data from hadronic collide... Recent astronomical observations of high redshift quasars, dark matter-dominated galaxies, mergers of neutron stars, glitch phenomena in pulsars, cosmic microwave background and experimental data from hadronic colliders do not rule out, but they even support the hypothesis that the energy-density in our universe most likely is upper-limited by <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span>which is predicted to lie between 2 to 3 the nuclear density <em>p</em><sub>0</sub>. Quantum fluids in the cores of massive NSs with <em>p </em><span style="white-space:nowrap;"><span style="white-space:nowrap;">≈</span><i> <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span></i><span style="white-space:nowrap;">e</span>a</span>ch the maximum compressibility state, where they become insensitive to further compression by the embedding spacetime and undergo a phase transition into the purely incompressible gluon-quark superfluid state. A direct correspondence between the positive energy stored in the embedding spacetime and the degree of compressibility and superfluidity of the trapped matter is proposed. In this paper relevant observational signatures that support the maximum density hypothesis are reviewed, a possible origin of <span style="white-space:nowrap;"><i>p<sub>max</sub><sup style="margin-left:-25px;">uni</sup></i> </span>i<span style="white-space:nowrap;">s pr</span>oposed and finally the consequences of this scenario on the spacetime’s topology of the universe as well as on the mechanisms underlying the growth rate and power of the high redshift QSOs are discussed. 展开更多
关键词 general relativity: Neutron Stars Incompressible Superfluids quantum Chromodynamics Cosmology: Big Bang Physics Dark Matter and Dark Energy QUASARS First Generation of Stars
下载PDF
Absolute Maximum Proper Time to an Initial Event, the Curvature of Its Gradient along Conflict Strings and Matter
16
作者 Eytan H. Suchard 《Journal of Modern Physics》 2013年第6期791-806,共16页
Einstein equation of gravity has on one side the momentum energy density tensor and on the other, Einstein tensor which is derived from Ricci curvature tensor. A better theory of gravity will have both sides geometric... Einstein equation of gravity has on one side the momentum energy density tensor and on the other, Einstein tensor which is derived from Ricci curvature tensor. A better theory of gravity will have both sides geometric. One way to achieve this goal is to develop a new measure of time that will be independent of the choice of coordinates. One natural nominee for such time is the upper limit of measurable time form an event back to the big bang singularity. This limit should exist despite the singularity, otherwise the cosmos age would be unbounded. By this, the author constructs a scalar field of time. Time, however, is measured by material clocks. What is the maximal time that can be measured by a small microscopic clock when our curve starts at near the “big bang” event and ends at an event within the nucleus of an atom? Will our tiny clock move along geodesic curves or will it move in a non geodesic curve within matter? It is almost paradoxical that a test particle in General Relativity will always move along geodesic curves but the motion of matter within the particle may not be geodesic at all. For example, the ground of the Earth does not move at geodesic velocity. Where there is no matter, we choose a curve from near “big bang” to an event such that the time measured is maximal. Without assuming force fields, the gravitational field which causes that two or more such curves intersect at events, would cause discontinuity of the gradient of the upper limit of measurable time scalar field. The discontinuity can be avoided only if we give up on measurement along geodesic curves where there is matter. In other words, our tiny test particle clock will experience force when it travels within matter or near matter. 展开更多
关键词 FOLIATION FIELD CURVATURE general relativity Accelerated Cosmic Expansion quantum Gravity Dark MATTER CHAMELEON Scalar FIELD
下载PDF
Geometric Phase in General Relativity
17
作者 Yossi Bachar Lawrence Horwitz 《Journal of Modern Physics》 CAS 2022年第9期1267-1271,共5页
We study the transport of a small wave packet in the embedding of the Stueckelberg-Horwitz-Piron relativistic quantum theory into the manifold of general relativity around the Schwarzschild solution using a semiclassi... We study the transport of a small wave packet in the embedding of the Stueckelberg-Horwitz-Piron relativistic quantum theory into the manifold of general relativity around the Schwarzschild solution using a semiclassical approximation. We find that the parallel transport of the momentum leads to a geometrical (Berry type) phase. 展开更多
关键词 Geometrical Phase quantum theory in general relativity Schwarzschild Solution
下载PDF
New Basic Theory of Gravity
18
作者 Hubert J. Veringa 《Journal of Modern Physics》 2016年第13期1818-1828,共11页
Although Newton’s law of gravity already exists for centuries, and its validity is beyond any doubt, we are still lacking a basic theory to explain the specific features of this law. The general belief is that any su... Although Newton’s law of gravity already exists for centuries, and its validity is beyond any doubt, we are still lacking a basic theory to explain the specific features of this law. The general belief is that any suitable theory should include, or will be a merger of, classical quantum theory and general relativity, but until now no acceptable mathematical model taking both aspects into account has proposed. The present letter is written to present a new scheme of analysis for the mutual interaction between particles that have some exchange with respect to time and space. It is found that the right form of Newton’s gravity law emerges by consequently working through the existing schemes of both quantum mechanics and the basic equations of relativity theory as expressed by the Dirac equation. 展开更多
关键词 GRAVITY quantum Physics general relativity
下载PDF
Disjointed Equivalence of Gravitational and Inertial Mass
19
作者 Dirk J. Pons 《Journal of Modern Physics》 CAS 2023年第3期237-270,共34页
Problem—Contemporary physics offers no underlying reason for the equivalence of inertial and gravitational mass. Approach—The equivalence is examined from the new physics provided by the cordus theory, being a non-l... Problem—Contemporary physics offers no underlying reason for the equivalence of inertial and gravitational mass. Approach—The equivalence is examined from the new physics provided by the cordus theory, being a non-local hidden-variable (NLHV) theory. Mathematical formalisms are derived for masses and observers in different fabric densities. Findings—A disjointed equivalence is predicted, whereby inertial and gravitational masses are equivalent in any one situation, but a different equivalence holds when the fabric densities change. Consequently this theory predicts that the gravitational constant G varies with fabric density, and hence would be different across the universe and across time. Not only is the gravitational constant non-constant, but the formulation of gravitation changes with fabric density. Specifically, the theory predicts gravity is stronger at genesis (and the end of the universe) such that orbit velocity v<sub>B</sub> ∝  (where r<sub>B</sub> is orbit radius), compared to weaker gravitation at middle life epochs with r<sub>B</sub><sub> </sub>∝ . The current Earth location and epoch correspond to the latter case, i.e. Newtonian gravitation is recovered. The findings disfavour the existence of both dark energy and dark matter, and instead attribute these effects to differences in the fabric density. Originality—The work makes the contribution of deriving a mass equivalence relationship that includes fabric density, identifying a disjointed mass equivalence, and showing that the gravitation formulation itself changes with relative fabric densities. 展开更多
关键词 Identity of Mass GRAVITATION INERTIA general relativity quantum Mechanics
下载PDF
Quantum Gravitational Energy Simplifies Gravitational Physics and Gives a New Einstein Inspired Quantum Field Equation without G
20
作者 Espen Gaarder Haug 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期626-653,共28页
We show the simplest form with which one can express the gravity force, and that still gives all the same predictions of observable phenomena as does standard Newton gravity and general relativity theory. In addition,... We show the simplest form with which one can express the gravity force, and that still gives all the same predictions of observable phenomena as does standard Newton gravity and general relativity theory. In addition, we show a new field equation that gives all the same predictions as general relativity theory, but that it is simpler as the only constant needed is the speed of light and that also gives quantum gravity. This new form to express gravity, through quantum gravitational energy, requires less constants to predict gravity phenomena than standard gravity theory. This alone should make the physics community interested in investigating this approach. It shows that gravitational energy, and other types of energy are a collision-length in their most complete and deepest form and that quantization of gravity is related to the reduced Compton frequency of the gravitational mass per Planck time. While general relativity theory needs two constants to predict gravity phenomena, that is G and c, our new theory, based on gravity energy, only needs one constant, c<sub>g</sub>, that is easily found from gravitational observations with no prior knowledge of any constants. Further, we will show that, at the deepest quantum level, quantum gravity needs two constants, c<sub>g</sub> and the Planck length, while the standard formulation here needs c, h and l<sub>p</sub>. Thus our theory gives a reduction in constants and simpler formulas than does standard gravity theory. Most important we by this seems to have a fully consistent framework for quantum gravity. 展开更多
关键词 quantum Gravity Gravity Force Newton Gravity general relativity theory Gravitational Energy Gravity Constant
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部