Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
Quantum randomness amplification protocols have increasingly attracted attention tbr their tantastic ability to ampllI~, weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic n...Quantum randomness amplification protocols have increasingly attracted attention tbr their tantastic ability to ampllI~, weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic noise-tolerant randomness amplification protocol using a finite number of untrusted devices was proposed. The protocol has the composable security against non-signalling eavesdroppers and could produce a single bit of randomness from weak randomness sources, which is certified by the violation of certain Bell inequalities. However, the protocol has a non-ignorable limitation on the min- entropy of independent sources. In this paper, we further develop the randomness amplification method and present a novel quantum randomness amplification protocol based on an explicit non-malleable two independent-source randomness extractor, which could remarkably reduce the above-mentioned specific limitation. Moreover, the composable security of our improved protocol is also proposed. Our results could significantly expand the application range for practical quantum randomness amplification, and provide a new insight on the practical design method for randomness extraction.展开更多
How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014)140407] proposed a pre...How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014)140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.展开更多
A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes...A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.展开更多
This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum-safe implementations within existing and future Internet of Things infrastructure are dis...This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum-safe implementations within existing and future Internet of Things infrastructure are discussed, along with quantum vulnerabilities in public key infrastructure and symmetric cryptographic algorithms. Other relevant non-encryption-specific areas within cybersecurity are similarly raised. The evolution and expansion of cyberwarfare as well as new developments in cyber defense beyond post-quantum cryptography and quantum key distribution are subsequently explored, with an emphasis on public and private sector awareness and vigilance in maintaining strong security posture.展开更多
从2000年开始,量子随机数发生器(Quantum Random Number Generator,QRNG)逐渐受到广泛关注。与算法或经典物理系统随机数发生器相比,QRNG的量子随机源不由确定性的算法或方程描述,仅由波函数进行概率描述,具有内禀随机性。目前,QRNG方...从2000年开始,量子随机数发生器(Quantum Random Number Generator,QRNG)逐渐受到广泛关注。与算法或经典物理系统随机数发生器相比,QRNG的量子随机源不由确定性的算法或方程描述,仅由波函数进行概率描述,具有内禀随机性。目前,QRNG方案大多基于光子体系。近年来,基于电子体系的量子随机数发生器(electronic Quantum Random Number Generator,eQRNG)方案相继被提出。与光子QRNG相比,eQRNG没有电-光-电转换,有效避免了转换过程中经典噪声的影响,在随机性上具有更大优势,且结构简单、系统稳定,与半导体工艺兼容,具有可集成性。基于此,通过介绍基于量子隧道效应的eQRNG研究进展,包括基于隧道二极管的eQRNG、基于范德瓦尔斯异质结的eQRNG与基于雪崩光电二极管的eQRNG等,阐述了eQRNG在随机性与量子性上的独特优势。展开更多
量子元胞自动机(quantum-dot cellular automata,QCA)是一种典型的纳米器件,有望成为VLSI设计中CMOS晶体管的替代者。文章基于QCA的内禀属性,以QCA交叉耦合结构为理论依据,设计一种真随机数发生器(true random number generator,TRNG),...量子元胞自动机(quantum-dot cellular automata,QCA)是一种典型的纳米器件,有望成为VLSI设计中CMOS晶体管的替代者。文章基于QCA的内禀属性,以QCA交叉耦合结构为理论依据,设计一种真随机数发生器(true random number generator,TRNG),从基础单元的设计和仿真到最终实现位拓展的功能,全程都基于QCA-Designer软件平台加以实现。与之前类似的研究成果相比,该文所设计的电路结构大大降低了延迟、功耗和元胞面积,具有一定的优势。最终收集的仿真结果要经过行业标准测试,由美国国家标准技术研究院(National Institute of Standards and Technology,NIST)提供评估标准,证明了产生的随机序列具有优良的随机性。展开更多
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.
基金Project supported by the National Natural Science Foundation of China(Grant No.61775185)
文摘Quantum randomness amplification protocols have increasingly attracted attention tbr their tantastic ability to ampllI~, weak randomness to almost ideal randomness by utilizing quantum systems. Recently, a realistic noise-tolerant randomness amplification protocol using a finite number of untrusted devices was proposed. The protocol has the composable security against non-signalling eavesdroppers and could produce a single bit of randomness from weak randomness sources, which is certified by the violation of certain Bell inequalities. However, the protocol has a non-ignorable limitation on the min- entropy of independent sources. In this paper, we further develop the randomness amplification method and present a novel quantum randomness amplification protocol based on an explicit non-malleable two independent-source randomness extractor, which could remarkably reduce the above-mentioned specific limitation. Moreover, the composable security of our improved protocol is also proposed. Our results could significantly expand the application range for practical quantum randomness amplification, and provide a new insight on the practical design method for randomness extraction.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00200 and 2011CB921200the National Natural Science Foundation of China under Grant Nos 61201239,61205118,11304397 and 61475148the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant Nos XDB01030100 and XDB01030300
文摘How to estimate the randomness of the measurement outcomes generated by a given device is an important issue in quantum information theory. Recently, Brunner et al. [Phys. Rev. Lett. 112 (2014)140407] proposed a prepare-and-measure quantum random number generation scenario with device-independent assumption, which indicates a method to test the randomness of bit strings according to the generation process rather than the results. Based on this protocol, we implement a quantum random number generator with an intrinsic stable phase-encoded quantum key distribution system. The system has been continuously running for more than 200 h, a stable witness W with the average value of 0.9752 and a standard deviation of 0.0024 are obtained. More than 1 G random bits are generated and the results pass all items of NIST test suite.
基金Supported by the State Key Program for Basic Research of China under Grant No 2011CBA00304the National Natural Science Foundation of China under Grant No 60836001the Tsinghua University Initiative Scientific Research Program under Grant No 20131089314
文摘A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.
文摘This research paper analyzes the urgent topic of quantum cybersecurity and the current federal quantum-cyber landscape. Quantum-safe implementations within existing and future Internet of Things infrastructure are discussed, along with quantum vulnerabilities in public key infrastructure and symmetric cryptographic algorithms. Other relevant non-encryption-specific areas within cybersecurity are similarly raised. The evolution and expansion of cyberwarfare as well as new developments in cyber defense beyond post-quantum cryptography and quantum key distribution are subsequently explored, with an emphasis on public and private sector awareness and vigilance in maintaining strong security posture.
文摘从2000年开始,量子随机数发生器(Quantum Random Number Generator,QRNG)逐渐受到广泛关注。与算法或经典物理系统随机数发生器相比,QRNG的量子随机源不由确定性的算法或方程描述,仅由波函数进行概率描述,具有内禀随机性。目前,QRNG方案大多基于光子体系。近年来,基于电子体系的量子随机数发生器(electronic Quantum Random Number Generator,eQRNG)方案相继被提出。与光子QRNG相比,eQRNG没有电-光-电转换,有效避免了转换过程中经典噪声的影响,在随机性上具有更大优势,且结构简单、系统稳定,与半导体工艺兼容,具有可集成性。基于此,通过介绍基于量子隧道效应的eQRNG研究进展,包括基于隧道二极管的eQRNG、基于范德瓦尔斯异质结的eQRNG与基于雪崩光电二极管的eQRNG等,阐述了eQRNG在随机性与量子性上的独特优势。
文摘量子元胞自动机(quantum-dot cellular automata,QCA)是一种典型的纳米器件,有望成为VLSI设计中CMOS晶体管的替代者。文章基于QCA的内禀属性,以QCA交叉耦合结构为理论依据,设计一种真随机数发生器(true random number generator,TRNG),从基础单元的设计和仿真到最终实现位拓展的功能,全程都基于QCA-Designer软件平台加以实现。与之前类似的研究成果相比,该文所设计的电路结构大大降低了延迟、功耗和元胞面积,具有一定的优势。最终收集的仿真结果要经过行业标准测试,由美国国家标准技术研究院(National Institute of Standards and Technology,NIST)提供评估标准,证明了产生的随机序列具有优良的随机性。