期刊文献+
共找到905篇文章
< 1 2 46 >
每页显示 20 50 100
Spatiotemporal Characteristics of Rainfall over Different Terrain Features in the Middle Reaches of the Yangtze River Basin during the Warm Seasons of 2016–20
1
作者 Qian WEI Jianhua SUN +2 位作者 Shenming FU Yuanchun ZHANG Xiaofang WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期915-936,共22页
Based on hourly rain gauge data during May–September of 2016–20,we analyze the spatiotemporal distributions of total rainfall(TR)and short-duration heavy rainfall(SDHR;hourly rainfall≥20 mm)and their diurnal variat... Based on hourly rain gauge data during May–September of 2016–20,we analyze the spatiotemporal distributions of total rainfall(TR)and short-duration heavy rainfall(SDHR;hourly rainfall≥20 mm)and their diurnal variations over the middle reaches of the Yangtze River basin.For all three types of terrain(i.e.,mountain,foothill,and plain),the amount of TR and SDHR both maximize in June/July,and the contribution of SDHR to TR(CST)peaks in August(amount:23%;frequency:1.74%).Foothill rainfall is characterized by a high TR amount and a high CST(in amount);mountain rainfall is characterized by a high TR frequency but a small CST(in amount);and plain rainfall shows a low TR amount and frequency,but a high CST(in amount).Overall,stations with high TR(amount and frequency)are mainly located over the mountains and in the foothills,while those with high SDHR(amount and frequency)are mainly concentrated in the foothills and plains close to mountainous areas.For all three types of terrain,the diurnal variations of both TR and SDHR exhibit a double peak(weak early morning and strong late afternoon)and a phase shift from the early-morning peak to the late-afternoon peak from May to August.Around the late-afternoon peak,the amount of TR and SDHR in the foothills is larger than over the mountains and plains.The TR intensity in the foothills increases significantly from midnight to afternoon,suggesting that thermal instability may play an important role in this process. 展开更多
关键词 short duration heavy rainfall diurnal variation foothill rainfall
下载PDF
Local Torrential Rainfall Event within a Mei-Yu Season Mesoscale Convective System:Importance of Back-Building Processes
2
作者 Honglei ZHANG Ming XUE +2 位作者 Hangfeng SHEN Xiaofan LI Guoqing ZHAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期847-863,共17页
An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.T... An extreme rainfall event occurred over Hangzhou,China,during the afternoon hours on 24 June 2013.This event occurred under suitable synoptic conditions and the maximum 4-h cumulative rainfall amount was over 150 mm.This rainfall event had two major rainbands.One was caused by a quasi-stationary convective line,and the other by a backbuilding convective line related to the interaction of the outflow boundary from the first rainband and an existing low-level mesoscale convergence line associated with a mei-yu frontal system.The rainfall event lasted 4 h,while the back-building process occurred in 2 h when the extreme rainfall center formed.So far,few studies have examined the back-building processes in the mei-yu season that are caused by the interaction of a mesoscale convergence line and a convective cold pool.The two rainbands are successfully reproduced by the Weather Research and Forecasting(WRF)model with fourlevel,two-way interactive nesting.In the model,new cells repeatedly occur at the west side of older cells,and the backbuilding process occurs in an environment with large CAPE,a low LFC,and plenty of water vapor.Outflows from older cells enhance the low-level convergence that forces new cells.High precipitation efficiency of the back-building training cells leads to accumulated precipitation of over 150 mm.Sensitivity experiments without evaporation of rainwater show that the convective cold pool plays an important role in the organization of the back-building process in the current extreme precipitation case. 展开更多
关键词 torrential rainfall back-building processes numerical simulation trigger mechanism convergence line convective cold pool
下载PDF
Determination of the critical rainfall of runoff-initiated debris flows by the perspective of physical mechanics and Shields stress
3
作者 MA Chao ZHU Yongtai +3 位作者 LU Lu DU Cui LYU Liqun DONG Jie 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1160-1173,共14页
The critical rainfall of runoff-initiated debris flows is utmost importance for local early hazard forecasting.This paper presents research on the critical rainfall of runoff-initiated debris flows through comparisons... The critical rainfall of runoff-initiated debris flows is utmost importance for local early hazard forecasting.This paper presents research on the critical rainfall of runoff-initiated debris flows through comparisons between slope gradients and three key factors,including topographic contributing area,dimensionless discharge,and Shields stress.The rainfall amount was estimated by utilizing in-situ rainfall records and a slope-dependent Shields stress model was created.The created model can predict critical Shields stress more accurately than the other two models.Furthermore,a new dimensionless discharge equation was proposed based on the corresponding discharge-gradient datasets.The new equation,along with factors such as contributing area above bed failure sites,channel width,and mean diameter of debris flow deposits,predicts a smaller rainfall amount than the in-situ measured records.Although the slope-dependent Shields stress model performs well and the estimated rainfall amount is lower than the in-situ records,the sediment initiation in the experiments falls within sheet flow regime due to a large Shields stress.Therefore,further sediment initiation experiments at a steeper slope range are expected in the future to ensure that the sediment transport belongs to mass failure regime characterized by a low level of Shields stress.Finally,a more accurate hazard forecast on the runoff-initiated debris flow holds promise when the corresponding critical slope-dependent dimensionless discharge of no motion,fluvial sediment transport,mass flow regime,and sheet flow regime are considered. 展开更多
关键词 Infinite slope stability Shields stress Contributing area-slope gradient rainfall back estimation
原文传递
Unstable evolution of railway slope under the rainfall-vibration joint action
4
作者 DONG Haoyu WANG Jiading +2 位作者 ZHANG Dengfei LI Lin XU Yuanjun 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1419-1431,共13页
Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few s... Understanding the unstable evolution of railway slopes is the premise for preventing slope failure and ensuring the safe operation of trains.However,as two major factors affecting the stability of railway slopes,few scholars have explored the unstable evolution of railway slopes under the joint action of rainfall-vibration.Based on the model test of sandy soil slope,the unstable evolution process of slope under locomotive vibration,rainfall,and rainfall-vibration joint action conditions was simulated in this paper.By comparing and analyzing the variation trends of soil pressure and water content of slope under these conditions,the change laws of pore pressure under the influence of vibration and rainfall were explored.The main control factors affecting the stability of slope structure under the joint action conditions were further defined.Combined with the slope failure phenomena under these three conditions,the causes of slope instability resulting from each leading factor were clarified.Finally,according to the above conclusions,the unstable evolution of the slope under the rainfall-vibration joint action was determined.The test results show that the unstable evolution process of sandy soil slope,under the rainfall-vibration joint action,can be divided into:rainfall erosion cracking,vibration promotion penetrating,and slope instability sliding three stages.In the process of slope unstable evolution,rainfall and vibration play the roles of inducing and promoting slide respectively.In addition,the deep cracks,which are the premise for the formation of the sliding surface,and the violent irregular fluctuation of soil pressure,which reflects the near penetration of the sliding surface,constitute the instability characteristics of the railway slope together.This paper reveals the unstable evolution of sandy soil slopes under the joint action of rainfall-vibration,hoping to provide the theoretical basis for the early warning and prevention technology of railway slopes. 展开更多
关键词 rainfall vibration joint action Small scale model tests Unstable evolution process Unstable characteristics Inducing sliding and promoting sliding
原文传递
Stability analysis of loose accumulation slopes under rainfall:case study of a high‑speed railway in Southwest China
5
作者 Xin Wang Qian Su +2 位作者 Zongyu Zhang Feihu Huang Chenfang He 《Railway Engineering Science》 EI 2024年第1期95-106,共12页
The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce... The high and steep slopes along a high-speed railway in the mountainous area of Southwest China are mostly composed of loose accumulations of debris with large internal pores and poor stability,which can easily induce adverse geological disasters under rainfall conditions.To ensure the smooth construction of the high-speed railway and the subsequent safe operation,it is necessary to master the stability evolution process of the loose accumulation slope under rainfall.This article simulates rainfall using the finite element analysis software’s hydromechanical coupling module.The slope stability under various rainfall situations is calculated and analysed based on the strength reduction method.To validate the simulation results,a field monitoring system is established to study the deformation characteristics of the slope under rainfall.The results show that rainfall duration is the key factor affecting slope stability.Given a constant amount of rainfall,the stability of the slope decreases with increasing duration of rainfall.Moreover,when the amount and duration of rainfall are constant,continuous rainfall has a greater impact on slope stability than intermittent rainfall.The setting of the field retaining structures has a significant role in improving slope stability.The field monitoring data show that the slope is in the initial deformation stage and has good stability,which verifies the rationality of the numerical simulation method.The research results can provide some references for understanding the influence of rainfall on the stability of loose accumulation slopes along high-speed railways and establishing a monitoring system. 展开更多
关键词 High-speed railway Loose accumulation slope Slope stability analysis rainfall effect Strength reduction
下载PDF
Seasonal Variability of Rainfall and Thunderstorm Patterns in Kenya
6
作者 Mary Kurgat Wilson Gitau 《Journal of Atmospheric Science Research》 2024年第1期106-117,共12页
This paper presents an analysis of spatial and temporal variation of rainfall and thunderstorm occurrence over Ken-ya from January 1987 to December 2017.The meteorological data used were obtained from the Kenya Meteor... This paper presents an analysis of spatial and temporal variation of rainfall and thunderstorm occurrence over Ken-ya from January 1987 to December 2017.The meteorological data used were obtained from the Kenya Meteorological Department(KMD)for the same period.This included the monthly thunderstorm occurrences and rainfall amounts of 26 synoptic stations across the country.The characteristics of monthly,seasonal and annual frequency results were presented on spatial maps while Time series graphs were used to display the pattern for annual cycle,seasonal varia-tions and the inter-annual variability of rainfall amounts and thunderstorm occurrences.A well-known non-parametric statistical method Mann Kendall(MK)trend test was used to determine and compare the statistical significance of the trends.Thunderstorm frequencies over the Eastern,Central and Coast regions of the country showed a bimodal pattern with high frequencies coinciding with March-April-May(MAM)and October-November-December(OND)rainy sea-sons.Very few thunderstorm days were detected over June-July-August(JJA)season.The areas to the western part of the country,near Lake Victoria,had the highest thunderstorm frequencies in the country over the three seasons:MAM,JJAS and OND.The annual frequency showed a quasi-unimodal pattern.These places near Lake Victoria showed sig-nificantly increasing thunderstorm trends during the MAM and OND seasons irrespective of the rainfall trends.This shows the effects of Lake Victoria over these areas,and it acts as a continuous source of moisture for thunderstorm for-mation.However,most stations across the country showed a reducing trend of thunderstorm frequency during MAM and JJA seasons.The importance of these findings is that they could support various policy makers,and users of cli-mate information,especially in the agriculture and aviation industries. 展开更多
关键词 rainfall THUNDERSTORM Lake Victoria Kenya Mann Kendall
下载PDF
Assessing the Relationship between October-November-December Rainfall and Indian Ocean Dipole in Recent Decades over Tanzania Following the 2011 Abrupt Change
7
作者 Charles Yusuph Ntigwaza Wen Wang 《Journal of Geoscience and Environment Protection》 2024年第3期110-130,共21页
The present study explored how the Indian Ocean Dipole (IOD) influences October-November-December (OND) rainfall over Tanzania in recent decade following the 2011 abrupt change. The study spans 50 years, from 1973 to ... The present study explored how the Indian Ocean Dipole (IOD) influences October-November-December (OND) rainfall over Tanzania in recent decade following the 2011 abrupt change. The study spans 50 years, from 1973 to 2022. Notable abrupt changes were observed in 1976 and 2011, leading us to divide our study into two periods: 1976-2010 and 2011-2022, allowing for a close investigation into the existing relationship between OND IOD and OND rainfall and their associated large-scale atmospheric circulations. It was found that the relationship between OND IOD and OND rainfall strengthened, with the correlation changed from +0.73 during 1976-2010 to +0.81 during 2011-2022. Further investigation revealed that, during 1976-2010, areas that received above- normal rainfall during positive IOD experienced below-normal during 2011- 2022 and vice versa. The same pattern relationship was observed for negative IOD. Spatial analysis demonstrates that the percentage departure of rainfall across the region mirrors the standardized rainfall anomalies. The study highlights that the changing relationship between OND IOD and OND rainfall corresponds to the east-west shift of Walker circulation, as well as the north-south shift of Hadley circulation. Analysis of sea surface temperature (SST) indicates that both positive and negative IOD events strengthened during 2011-2022 compared to 1976-2010. Close monitoring of this relationship across different timescales could be useful for updating OND rainfall seasonal forecasts in Tanzania, serving as a tool for reducing socio-economic impacts. 展开更多
关键词 Sea Surface Temperature (SST) Percentage Departure of rainfall Atmos-pheric Circulations Walker Circulation Hadley Circulation
下载PDF
Rainfall Monitoring Using a Microwave Links Network:A Long-Term Experiment in East China
8
作者 Xichuan LIU Kun ZHAO +2 位作者 Mingzhong ZOU Kang PU Kun SONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1567-1583,共17页
The first long-term rainfall monitoring experiment using the commercial microwave links(CMLs)network in East China is introduced.The network,located in Jiangyin,Jiangsu Province,consists of 49 links with frequencies r... The first long-term rainfall monitoring experiment using the commercial microwave links(CMLs)network in East China is introduced.The network,located in Jiangyin,Jiangsu Province,consists of 49 links with frequencies ranging from 15 GHz to 26 GHz and lengths from 1.14 km to 4.78 km.An OTT PARSIVEL disdrometer is deployed to refine the local rain-induced attenuation relationship,and the CML observations are compared simultaneously with five rain gauges.The inversion parameters of the CML are optimized by minimizing the error of the accumulated rainfall of historical rainfall events.The inversion results show that the daily accumulated rainfall retrieved by the CMLs agrees well with the rain gauge measurements.As an opportunistic approach to monitor near-surface rainfall with high spatiotemporal representativeness and accuracy,the CML network can be used to monitor and forecast urban flood disasters,especially in regions where the widepread deployment of conventional meteorological instruments is impractical. 展开更多
关键词 rainfall monitoring microwave links rain rate inversion path-average rainfall accumulation rainfall field
下载PDF
Comparison of Microphysical Characteristics of Warm-sector,Frontal and Shear-line Heavy Rainfall During the Pre-summer Rainy Season in South China
9
作者 夏丰 刘显通 +6 位作者 胡胜 黎慧琦 饶晓娜 林青 肖辉 冯璐 赖睿泽 《Journal of Tropical Meteorology》 SCIE 2023年第2期204-215,共12页
Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we invest... Warm-sector heavy rainfall(WR),shear-line heavy rainfall(SR),and frontal heavy rainfall(FR)are three types of rainfall that frequently occur during the pre-summer rainy season in south China.In this research,we investigated the differences in microphysical characteristics of heavy rainfall events during the period of 10-15 May 2022 based on the combined observations from 11 S-band polarimetric radars in south China.The conclusions are as follows:(1)WR has the highest radar echo top height,the strongest radar echo at all altitudes,the highest lightning density,and the most active ice-phase process,which suggests that the convection is the most vigorous in the WR,moderate in the FR,and the weakest in the SR.(2)Three types of rainfall are all marine-type precipitation,the massweighted mean diameter(Dm,mm)and the intercept parameter(Nw,mm^(-1) m^(-3))of the raindrops in the WR are the largest.(3)The WR possesses the highest proportion of graupel compared with the FR and SR,and stronger updrafts and more abundant water vapor supply may lead to larger raindrops during the melting and collision-coalescence processes.(4)Over all the heights,liquid and ice water content in the WR are higher than those in the SR and FR,the ratio of ice to liquid water content in the WR is as high as 27%when ZH exceeds 50 dBZ,definitely higher than that in the SR and FR,indicating that the active ice-phase process existing in the WR is conducive to the formation of heavy rainfall. 展开更多
关键词 microphysical characteristic S-band polarimetric radar warm-sector heavy rainfall frontal heavy rainfall shear-line heavy rainfall
下载PDF
Study of the Spatio-Temporal Variability of Rainfall in the Northern Region of Senegal
10
作者 Aichétou Dia Diop Abdoul Karim Mbodji +8 位作者 El Hadji Deme Malick Wade Mahamat Adoum Moussa Abdoulaye Bouya Diop Younousse Biaye Djiby Sarr Abdou Karim Farota Aboubakary Diakhaby Bouya Diop 《Journal of Geoscience and Environment Protection》 2023年第4期1-14,共14页
Senegal is a country of the Sahel. In this region, most of the populations live from agro-pastoral activities. The northern zone of Senegal is strongly influenced by river cultures. And the dynamics of the Senegal Riv... Senegal is a country of the Sahel. In this region, most of the populations live from agro-pastoral activities. The northern zone of Senegal is strongly influenced by river cultures. And the dynamics of the Senegal River are dependent on rainfall. The rainfall in the area is very closely linked to the dynamics of the atmosphere. The study of the spatio-temporal variability of rainfall in the northern region of Senegal requires quality rainfall observation data. It includes the Ferlo and the Senegal River valley, in particular the regions of Louga (department of Linguère included), Saint-Louis (departments of Dagana and Podor included) and Matam. These stations have been defined since Le Borgne (1988). The difficulty of having quality rain observation data can be resolved by using more accessible and good quality satellite data. Using satellite data, namely MSWEP, CRU, TAMSAT, ARC and PERSIANN, we showed the return of precipitation that appeared in 2000 and the unimodal cycle of precipitation in our study area. These data were validated using the correlation coefficient, the bias, the RMSE and the Nash index with observation data from the Regional Study Center for the Improvement of Adaptation to Drought (CERASS). The CRU data is then retained. Thus, this study made it possible to show the zonal distribution of rainfall in the northern zone of Senegal. 展开更多
关键词 rainfall in the Northern Region of Senegal Variability of rainfall Satellite Data The Zonal Distribution of rainfall
下载PDF
Long-Term Trends in Pre-Summer Daytime and Nocturnal Extreme Hourly Rainfall in a Coastal City of South China
11
作者 苏琳 李俊鲁 +1 位作者 黄伟健 冯志雄 《Journal of Tropical Meteorology》 SCIE 2023年第1期39-54,共16页
The long-term trends in the occurrence frequency of pre-summer daytime and nocturnal extreme hourly rainfall(EXHR) during 1988-2018 in Hong Kong and their spatial distributions are examined and analyzed. Despite a sig... The long-term trends in the occurrence frequency of pre-summer daytime and nocturnal extreme hourly rainfall(EXHR) during 1988-2018 in Hong Kong and their spatial distributions are examined and analyzed. Despite a significant increasing trend observed in the occurrence frequency of pre-summer EXHRs during the investigated period,the increase in daytime and nocturnal EXHRs show distinct spatial patterns. Nocturnal EXHRs show uniform increasing trends over the entire Hong Kong. However, the increase in daytime EXHRs is concentrated over the northern or eastern areas of Hong Kong, indicating a downstream shift of pre-summer EXHRs in Hong Kong with regard to the prevailing southwesterly monsoonal flows in south China. The clustering of weather types associated with daytime and nocturnal EXHRs further reveals that the increase in EXHRs over Hong Kong are mainly contributed by the increase of the events associated with southwesterly monsoonal flows with relatively high speeds. During the past few decades, the southwesterly monsoonal flows at coastal south China have undergone a substantial weakening due to the increased surface roughness induced by the urbanization over the Guangdong-Hong Kong-Macao Greater Bay Area since 1990s,leading to enhanced low-level convergence and thus significant increase in EXHRs at coastal south China. Meanwhile,daytime sea-wind circulation at coastal south China is markedly enhanced during the investigated period, which is the main reason for the northward shift of daytime EXHRs in Hong Kong. In addition, the blocked southwesterly monsoonal flows at coastal south China are detoured eastward, leading to stronger convergence and increase in EXHRs at eastern coast of Hong Kong, especially during daytime, when the easterly sea winds prevail at the region. 展开更多
关键词 extreme hourly rainfall diurnal rainfall cycle linear trend coastal Pearl River Delta
下载PDF
Comparison of Microphysical Characteristics Between Warm-sector and Frontal Heavy Rainfall in the South of China
12
作者 冯璐 胡胜 +5 位作者 刘显通 黎慧琦 肖辉 李晓惠 赖瑞泽 林青 《Journal of Tropical Meteorology》 SCIE 2023年第1期87-100,共14页
During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and ... During the April-June raining season,warm-sector heavy rainfall(WR) and frontal heavy rainfall(FR) often occur in the south of China,causing natural disasters.In this study,the microphysical characteristics of WR and FR events from 2016 to 2022 are analyzed by using 2-dimensional video disdrometer(2DVD) data in the south of China.The microphysical characteristics of WR and FR events are quite different.Compared with FR events,WR events have higher concentration of D<5.3 mm(especially D <1 mm),leading to higher rain rates.The mean values of Dmand lgNwof WR events are higher than that of FR events.The microphysical characteristics in different rain rate classes(C1:R~5-20 mm h-1,C2:R~20-50 mm h-1,C3:R~50-100 mm h^(-1),and C4:R> 100 mm h^(-1)) for WR and FR events are also different.Raindrops from C3 contribute the most to the precipitation of WR events,and raindrops from C2 contribute the most to the precipitation of FR events.For C2 and C3,compared with FR events,WR events have higher concentration of D <1 mm and D~3-4.5 mm.Moreover,the shape and slope(μ-A) relationships and the radar reflectivity and rain rate(Z-R) relationships of WR and FR events are quite different in each rain rate class.The investigation of the difference in microphysical characteristics between WR and FR events provide useful information for radar-based quantitative precipitation estimation and numerical prediction. 展开更多
关键词 warm-sector heavy rainfall frontal heavy rainfall raindrop size distribution(DSD) 2-dimensional video disdrometer(2DVD) the south of China
下载PDF
Climate Variability & Establishment of Rainfall Threshold Line for Landslide Hazards in Rangamati, Bangladesh
13
作者 Mahmuda Khatun Abu Taher Mohammad Shakhawat Hossain Hossain Md. Sayem 《Open Journal of Geology》 2023年第9期959-979,共21页
This study aims to evaluate the impact of extreme rainfall events on landslides under current and past climate scenarios. Rainfall-triggered landslides are analyzed by rainfall estimates, derived using statistics of e... This study aims to evaluate the impact of extreme rainfall events on landslides under current and past climate scenarios. Rainfall-triggered landslides are analyzed by rainfall estimates, derived using statistics of events. It is established that recent climate changes, mainly temperature and rainfall patterns have significantly increased the rainfall-induced landslide hazards in the Rangamati district, Bangladesh. It is also observed that the temperature and rainfall of Rangamati had increased gradually during the last 40 years (1981-2021). On 13 June 2017, a series of landslides triggered by heavy monsoon rains (300 mm/24 h) occurred and killed more than 112 people in the Rangamati hill district, Bangladesh. The highest annual decade rainfall is 3816 mm, recorded in 2010-21. A relationship between causalities and the number of events has also been established. The analysis shows that both antecedent and single-day major rainfall patterns can influence sliding events. It is established that monsoonal rainfall (June-September) can significantly influence catastrophic landslide hazard events. Finally, two rainfall threshold lines for the researched area are constructed based on antecedent and single-day major rainfall occurrences, as well as the number of fatalities caused by landslides. Total rainfall of 100 mm (16.66 mm/day) during six days appears to define the minimum rainfall that has led to shallow landslides/slope failures, while 210 mm (35 mm/day) within six days appears to define the lowest rainfall that could be a cause of catastrophic landslide in Rangamati district. 展开更多
关键词 Climate Change Antecedent rainfall rainfall Threshold Catastrophic and Landslide
下载PDF
Northeastern Tropical Atlantic SST and Sahel Rainfall Variability
14
作者 Dahirou Wane Abdou Lahat Dieng +1 位作者 Coumba Niang Amadou T. Gaye 《Atmospheric and Climate Sciences》 2023年第4期431-454,共24页
The SST variability during the summer period in the northeastern tropical Atlantic region (NTA) is characterized by an alternation of warming/cooling which represents 87% of the total variability. The aim of this pape... The SST variability during the summer period in the northeastern tropical Atlantic region (NTA) is characterized by an alternation of warming/cooling which represents 87% of the total variability. The aim of this paper is to study the atmospheric responses as well as the precipitation associated with these oceanic conditions. Based on Reynolds’s SST from 1982 to 2019, a normalized Northern Tropical Atlantic index (NTAI) is computed into the region between 15° - 25°W;12° - 16°N and a composite analysis is then performed. It is shown that the NTAI is significantly correlated with the SST’s first principal component mode (PC1) in this region. Moreover, the composite of SST anomalies and atmospheric parameters exhibits a strong local ocean-atmosphere interaction which highly impacts the large-scale atmospheric circulation in West Africa, particularly in the western Sahel. An in-depth analysis shows that the atmospheric response to the warm (cold) SST is a cyclonic (anticyclonic) circulation in the lower layers near the West Africa Coast. This cyclonic (anticyclonic) circulation strengthens/reduces the moisture transport towards the continent in the low levels. In the middle layers of the atmosphere (500 hPa), the warm (cold) composite is associated with a decrease (increase) in the intensity of the African Easterly Jet (AEJ) whereas, in the upper atmosphere (200 hPa), the strengthening (weakening) of the Tropical Easterly Jet (TEJ) is observed. With regard to the composite precipitation field, a positive/negative SST anomaly is associated with significantly enhanced/reduced rainfall in the western Sahelian region. It is found that this relationship (correlation) increases as we are closer to the coasts. 展开更多
关键词 SST-Rain Sahel rainfall Senegal rainfall Ocean-Atmosphere Interaction
下载PDF
On the Key Dynamical Processes Supporting the 21.7 Zhengzhou Record-breaking Hourly Rainfall in China 被引量:9
15
作者 Peng WEI Xin XU +6 位作者 Ming XUE Chenyue ZHANG Yuan WANG Kun ZHAO Ang ZHOU Shushi ZHANG Kefeng ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期337-349,共13页
An extremely heavy rainfall event occurred in Zhengzhou,China,on 20 July 2021 and produced an hourly rainfall rate of 201.9 mm,which broke the station record for China's Mainland.Based on radar observations and a ... An extremely heavy rainfall event occurred in Zhengzhou,China,on 20 July 2021 and produced an hourly rainfall rate of 201.9 mm,which broke the station record for China's Mainland.Based on radar observations and a convection-permitting simulation using the WRF-ARW model,this paper investigates the multiscale processes,especially those at the mesoscale,that support the extreme observed hourly rainfall.Results show that the extreme rainfall occurred in an environment characteristic of warm-sector heavy rainfall,with abundant warm moist air transported from the ocean by an abnormally northward-displaced western Pacific subtropical high and Typhoon In-Fa(2021).However,rather than through back building and echo training of convective cells often found in warm-sector heavy rainfall events,this extreme hourly rainfall event was caused by a single,quasi-stationary storm in Zhengzhou.Scale separation analysis reveals that the extreme-rainproducing storm was supported and maintained by the dynamic lifting of low-level converging flows from the north,south,and east of the storm.The low-level northerly flow originated from a mesoscale barrier jet on the eastern slope of the Taihang Mountain due to terrain blocking of large-scale easterly flows,which reached an overall balance with the southerly winds in association with a low-level meso-β-scale vortex located to the west of Zhengzhou.The large-scale easterly inflows that fed the deep convection via transport of thermodynamically unstable air into the storm prevented the eastward propagation of the weak,shallow cold pool.As a result,the convective storm was nearly stationary over Zhengzhou,resulting in record-breaking hourly precipitation. 展开更多
关键词 extreme rainfall multiscale processes OROGRAPHY barrier jet low-level mesoscale vortex
下载PDF
On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021: A Convection-Permitting Ensemble Modeling Study 被引量:4
16
作者 Yali LUO Jiahua ZHANG +5 位作者 Miao YU Xudong LIANG Rudi XIA Yanyu GAO Xiaoyu GAO Jinfang YIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期393-409,共17页
This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permit... This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced. 展开更多
关键词 URBANIZATION extreme rainfall convection-permitting ensemble simulation land-atmosphere interaction boundary layer water vapor transport
下载PDF
The Roles of Low-level Jets in “21·7” Henan Extremely Persistent Heavy Rainfall Event 被引量:5
17
作者 Yuhan LUO Yu DU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期350-373,共24页
An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitatio... An extremely heavy rainfall event lasting from 17 to 22 July 2021 occurred in Henan Province of China, with accumulated precipitation of more than 1000 mm over a 6-day period that exceeded its mean annual precipitation. The present study examines the roles of persistent low-level jets(LLJs) in maintaining the precipitation using surface station observations and reanalysis datasets. The LLJs triggered strong ascending motions and carried moisture mainly from the outflow of Typhoon In-fa(2021). The varying directions of the LLJs well corresponded to the meridional shifts of the rainfall. The precipitation rate reached a maximum during 20-21 July as the LLJs strengthened and expanded vertically into double LLJs, including synoptic-weather-system-related LLJs(SLLJs) at 850–700 hPa and boundary-layer jets(BLJs)at ~950 hPa. The coupling of the SLLJ and BLJ provided strong mid-and low-level convergence on 20 July, whereas the SLLJ produced mid-level divergence at its entrance that coupled with low-level convergence at the terminus of the BLJ on21 July. The formation mechanisms of the two types of LLJs are further examined. The SLLJs and the low-pressure vortex(or inverted trough) varied synchronously as a whole and were affected by the southwestward movement of the WPSH in the rainiest period. The persistent large total pressure gradient force at low levels also maintained the strength of low-level geostrophic winds, thus sustaining the BLJs on the synoptic scale. The results based on a Du-Rotunno 1D model show that the Blackadar and Holton mechanisms jointly governed the BLJ dynamics on the diurnal scale. 展开更多
关键词 extremely persistent heavy rainfall low-level jet dynamic and thermodynamic effect diurnal cycle
下载PDF
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:2
18
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope rainfall Reservoir water level fluctuation Deformation characteristics Slope failure mechanism
原文传递
Experimental study on instability mechanism and critical intensity of rainfall of high-steep rock slopes under unsaturated conditions 被引量:1
19
作者 Xiaoshuang Li Qihang Li +4 位作者 Yunmin Wang Wei Liu Di Hou Wenbo Zheng Xiong Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第10期1243-1260,共18页
Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and ... Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and intensity of precipitation.A large-scale model experiment was conducted on a self-designed physical simulation experiment platform to investigate the failure and instability of high-steep rock slopes under unsaturated conditions.The real-time reproduction of the progressive failure process in high-steep rock slopes enabled the determination of the critical rainfall intensity and revealed the mechanism underlying slope instability.Experiment results indicated that rainfall may be the primary factor contributing to rock mass instability,while continuous pillar mining exacerbates the extent of rock mass failure.The critical failure stage of high-steep rock slopes occurs at a rainfall intensity of 40 mm/h,whereas a rainfall exceeding 50 mm can induce critical instability and precipitation reaching up to 60 mm will result in slope failure.The improved region growing segmentation method(IRGSM)was subsequently employed for image recognition of rock mass deformation in underground mines.Herein an error comparison with the simple linear iterative cluster(SLIC)superpixel method and the original region growing segmentation method(ORGSM)showed that the average identification error in the X and Y directions by the method was reduced significantly(1.82%and 1.80%in IRGSM;4.70%and 6.26%in SLIC;9.45%and 12.40%in ORGSM).Ultimately,the relationship between rainfall intensity and failure probability was analyzed using the Monte Carlo method.Moreover,the stability assessment criteria of rock slope under unsaturated condition were quantitatively and accurately evaluated. 展开更多
关键词 Open-pit to underground mining Rock slope rainfall infiltration Excavation unloading Similar physical model Image recognition
下载PDF
Skilful Forecasts of Summer Rainfall in the Yangtze River Basin from November 被引量:1
20
作者 Philip E.BETT Nick DUNSTONE +2 位作者 Nicola GOLDING Doug SMITH Chaofan LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期2082-2091,共10页
Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced m... Variability in the East Asian summer monsoon(EASM)brings the risk of heavy flooding or drought to the Yangtze River basin,with potentially devastating impacts.Early forecasts of the likelihood of enhanced or reduced monsoon rainfall can enable better management of water and hydropower resources by decision-makers,supporting livelihoods and major economic and population centres across eastern China.This paper demonstrates that the EASM is predictable in a dynamical forecast model from the preceding November,and that this allows skilful forecasts of summer mean rainfall in the Yangtze River basin at a lead time of six months.The skill for May–June–July rainfall is of a similar magnitude to seasonal forecasts initialised in spring,although the skill in June–July–August is much weaker and not consistently significant.However,there is some evidence for enhanced skill following El Niño events.The potential for decadal-scale variability in forecast skill is also examined,although we find no evidence for significant variation. 展开更多
关键词 seasonal forecasting interannual forecasting flood forecasting Yangtze basin rainfall East Asian summer monsoon
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部