期刊文献+
共找到18,934篇文章
< 1 2 250 >
每页显示 20 50 100
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network
1
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
2
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 Deep Learning Convolutional neural networks (CNN) Seismic Fault Identification U-Net 3D model Geological Exploration
下载PDF
A study on temperature monitoring method for inverter IGBT based on memory recurrent neural network
3
作者 Yunhe Liu Tengfei Guo +2 位作者 Jinda Li Chunxing Pei Jianqiang Liu 《High-Speed Railway》 2024年第1期64-70,共7页
The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining d... The power module of the Insulated Gate Bipolar Transistor(IGBT)is the core component of the traction transmission system of high-speed trains.The module's junction temperature is a critical factor in determining device reliability.Existing temperature monitoring methods based on the electro-thermal coupling model have limitations,such as ignoring device interactions and high computational complexity.To address these issues,an analysis of the parameters influencing IGBT failure is conducted,and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory(MMALSTM)recursive neural network is proposed,which takes the forward voltage drop and collector current as features.Compared with the traditional electricalthermal coupling model method,it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process.The simulation model of a highspeed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature.The simulation outcomes,which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model,confirm the reliability of this approach for predicting the temperature of IGBT power modules. 展开更多
关键词 IGBT Electro-thermal coupling model Junction temperature monitoring Loss model neural networks
下载PDF
Artificial neural network-based one-equation model for simulation of laminar-turbulent transitional flow 被引量:1
4
作者 Lei Wu Bing Cui Zuoli Xiao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期50-57,共8页
A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equa... A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equation of the intermittency factor in transition-predictive Spalart-Allmaras(SA)-γmodel.By taking SA-γmodel as the benchmark,the present ANN model is trained at two airfoils with various angles of attack,Mach numbers and Reynolds numbers,and tested with unseen airfoils in different flow states.The a posteriori tests manifest that the mean pressure coefficient,skin friction coefficient,size of laminar separation bubble,mean streamwise velocity,Reynolds shear stress and lift/drag/moment coefficient from the present two-way coupling ANN model almost coincide with those from the benchmark SA-γmodel.Furthermore,the ANN model proves to exhibit a higher calculation efficiency and better convergence quality than traditional SA-γmodel. 展开更多
关键词 TRANSITION TURBULENCE Eddy-viscosity model Artificial neural network Intermittency factor
下载PDF
Fractional Order Environmental and Economic Model Investigations Using Artificial Neural Network
5
作者 Wajaree Weera Chantapish Zamart +5 位作者 Zulqurnain Sabir Muhammad Asif Zahoor Raja Afaf S.Alwabli S.R.Mahmoud Supreecha Wongaree Thongchai Botmart 《Computers, Materials & Continua》 SCIE EI 2023年第1期1735-1748,共14页
The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE m... The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described. 展开更多
关键词 Environmental and economic model artificial neural networks fractional order NONLINEAR Levenberg-Marquardt backpropagation
下载PDF
Nitrogen Content Inversion of Corn Leaf Data Based on Deep Neural Network Model
6
作者 Yulin Li Mengmeng Zhang +2 位作者 Maofang Gao Xiaoming Xie Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期619-630,共12页
To obtain excellent regression results under the condition of small sample hyperspectral data,a deep neural network with simulated annealing(SA-DNN)is proposed.According to the characteristics of data,the attention me... To obtain excellent regression results under the condition of small sample hyperspectral data,a deep neural network with simulated annealing(SA-DNN)is proposed.According to the characteristics of data,the attention mechanism was applied to make the network pay more attention to effective features,thereby improving the operating efficiency.By introducing an improved activation function,the data correlation was reduced based on increasing the operation rate,and the problem of over-fitting was alleviated.By introducing simulated annealing,the network chose the optimal learning rate by itself,which avoided falling into the local optimum to the greatest extent.To evaluate the performance of the SA-DNN,the coefficient of determination(R^(2)),root mean square error(RMSE),and other metrics were used to evaluate the model.The results show that the performance of the SA-DNN is significantly better than other traditional methods. 展开更多
关键词 precision agriculture deep neural network nitrogen content detection regression model
下载PDF
Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow
7
作者 Qingjia Meng Zhou Jiang Jianchun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期58-69,共12页
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ... Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model. 展开更多
关键词 Compressible turbulent channel flow Fully connected neural network model Large eddy simulation
下载PDF
Leveraging Quantum Computing for the Ising Model to Simulate Two Real Systems: Magnetic Materials and Biological Neural Networks (BNNs)
8
作者 David L. Cao Khoi Dinh 《Journal of Quantum Information Science》 2023年第3期138-155,共18页
Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hami... Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles. 展开更多
关键词 Ising model Magnetic Material Biological neural network Quantum Computting International Business Machines (IBM)
下载PDF
Nonlinear modeling based on RBF neural networks identification and adaptive fuzzy control of DMFC stack 被引量:1
9
作者 苗青 曹广益 朱新坚 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期346-351,共6页
阳极的温度模型和直接甲醇燃料房间(DMFC ) 的阴极叠被使用光线的基础功能(RBF ) 建立处理建模和 DMFC 的控制问题的神经网络鉴定技术栈。一个适应模糊神经网络温度控制器基于建立的鉴定模型被设计,并且控制器的参数被新奇的背繁殖(BP... 阳极的温度模型和直接甲醇燃料房间(DMFC ) 的阴极叠被使用光线的基础功能(RBF ) 建立处理建模和 DMFC 的控制问题的神经网络鉴定技术栈。一个适应模糊神经网络温度控制器基于建立的鉴定模型被设计,并且控制器的参数被新奇的背繁殖(BP ) 调整算法。模拟结果证明为方法建模的 RBF 神经网络鉴定是正确的,有效并且建立的模型有好精确性。而且,设计的适应模糊神经网络温度控制器的性能是优异的。关键词直接甲醇燃料房间(DMFC ) 栈 - 光线的基础功能(RBF ) 神经网络 - 国家高科技研究和中国(资助号码 2003AA517020 ) 展开更多
关键词 DMFC 燃料电池 rbf 神经网络 控制器
下载PDF
A New Searching Strategy for the Lost Plane Based on RBF Neural Network Model and Global Optimization Model
10
作者 Yiqing YU 《International Journal of Technology Management》 2015年第4期126-128,共3页
关键词 神经网络模型 搜索区域 优化模型 rbf 平面 0-1背包问题 改进的遗传算法 搜索时间
下载PDF
A Short-Term Traffic Flow Prediction ModelBased on Quantum Genetic Algorithm andFuzzy RBF Neural Networks
11
作者 Kun Zhang 《计算机科学与技术汇刊(中英文版)》 2016年第1期24-39,共16页
关键词 神经网络 流动模拟 基因算法 rbf 交通 预言 短期 ARIMA
下载PDF
A Model to Predict Rolling Force of Finishing Stands with RBF Neural Networks
12
作者 应宇圣 王景成 陈春召 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期256-259,共4页
In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with tradition... In view of intrinsic imperfection of traditional models of rolling force, in ord er to improve the prediction accuracy of rolling force, a new method combining radial basis function(RBF) neural networks with traditional models to predict rolling f orce was proposed. The off-line simulation indicates that the predicted results are much more accurate than that with traditional models. 展开更多
关键词 光线 神经网络 生产技术 产品质量 自动化
下载PDF
基于RBF神经网络的光伏并网系统自适应等效建模方法
13
作者 张姝 陈豪 肖先勇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第4期77-86,共10页
针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应... 针对广义负荷建模中的光伏并网系统模型难以适应不同逆变器控制和频率扰动的动态响应问题,提出了一种基于径向基函数(radialbasisfunction,RBF)神经网络的光伏并网系统自适应等效建模方法。首先,建立了光伏并网逆变器不同控制策略响应波形的检测判据。然后,构建了以电压-频率扰动为输入,有功功率和无功功率为输出的光伏并网系统RBF神经网络模型。最后,在Matlab/Simulink中搭建了光伏并网系统模型,并将其接入IEEE14节点配电网进行仿真验证。结果表明,构建的光伏并网自适应等效模型能够有效辨识电压频率给定控制、有功无功给定控制、下垂控制策略类型,能够准确反映光伏并网系统在不同电压、频率扰动下的有功功率、无功功率的动态响应特性。 展开更多
关键词 光伏并网系统 等效建模 逆变器控制 电压-频率扰动 rbf神经网络
下载PDF
智能汽车轨迹跟踪MPC-RBF-SMC协同控制策略研究
14
作者 张良 蒋瑞洋 +2 位作者 卢剑伟 程浩 雷夏阳 《汽车工程师》 2024年第5期11-19,共9页
针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当... 针对自动驾驶车辆行驶过程中模型失配以及外部环境干扰导致车辆轨迹跟踪环节精确性不高的问题,提出了一种结合车辆运动学模型预测控制(MPC)、径向基(RBF)神经网络和滑模控制(SMC)的轨迹跟踪控制策略。通过建立车辆运动学MPC模型计算当前状态车辆期望横摆角速度,并将其与实际横摆角速度的偏差输入RBF-SMC控制器,利用RBF快速逼近非线性模型的特点,结合滑模控制输出前轮转角,实现车辆的横向轨迹跟踪控制。仿真结果表明,与传统的控制器相比,该方法轨迹跟踪精度显著提高,并在不同行驶工况下表现出较好的鲁棒性。 展开更多
关键词 车辆运动学模型 模型预测控制 径向基神经网络 滑模控制
下载PDF
基于GA的RBF神经网络气液两相流持液率预测模型优化
15
作者 廖锐全 李龙威 +2 位作者 王伟 马斌 潘元 《长江大学学报(自然科学版)》 2024年第2期91-100,共10页
为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色... 为了提高气液两相流持液率预测精度,针对传统径向基函数(RBF)神经网络预测气液两相流持液率网络拓扑结构困难和收敛速度慢等问题,提出一种基于遗传算法(GA)优化径向基函数神经网络的气液两相流持液率预测模型。通过系统聚类算法和灰色关联度分析(GRA)对收集的实验数据进行处理,优选出最优模型特征,同时结合遗传算法确定了RBF神经网络结构参数。基于室内实验数据进行训练,并与常用于持液率预测的反向传播(BP)神经网络、GA-BP神经网络及RBF神经网络进行对比,评估了模型的准确性及可行性。结果表明:GA-RBF神经网络模型均方误差为0.0017,均方根误差为0.0416,平均绝对误差为0.0281,拟合度为0.9483。相较于其他神经网络模型,该预测模型表现出更高的计算精度和更强的泛化能力。 展开更多
关键词 持液率 气液两相流 rbf神经网络 遗传算法 数据清洗
下载PDF
基于RBF神经网络滑模控制的卷纸纠偏系统
16
作者 张继红 《中国造纸学报》 CAS CSCD 北大核心 2024年第1期107-113,共7页
设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和... 设计了采用RBF神经网络控制的伺服纠偏控制系统,通过建立其动力学模型,运用MATLAB/Simulink仿真软件仿真,并进行实验验证,分析系统动态性能,得到响应曲线。结果表明,在拉纸速度65 mm/s下,跑偏量从1.5 mm降低到0.55 mm,该伺服系统位移和速度跟踪误差均较小。 展开更多
关键词 卷纸 纠偏控制 rbf神经网络 滑模控制 MATLAB/SIMULINK 动态性能
下载PDF
Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions 被引量:2
17
作者 Hui Pang Longxing Wu +2 位作者 Jiahao Liu Xiaofei Liu Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期1-12,I0001,共13页
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap... Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation. 展开更多
关键词 Lithium-ion batteries Physics-informed neural network Bidirectional long-term memory Heat generation rate estimation Electrochemical model
下载PDF
Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling 被引量:5
18
作者 Feng Hua Zhou Fang Tong Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第12期2562-2572,共11页
System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On... System design and optimization problems require large-scale chemical kinetic models. Pure kinetic models of naphtha pyrolysis need to solve a complete set of stiff ODEs and is therefore too computational expensive. On the other hand, artificial neural networks that completely neglect the topology of the reaction networks often have poor generalization. In this paper, a framework is proposed for learning local representations from largescale chemical reaction networks. At first, the features of naphtha pyrolysis reactions are extracted by applying complex network characterization methods. The selected features are then used as inputs in convolutional architectures. Different CNN models are established and compared to optimize the neural network structure.After the pre-training and fine-tuning step, the ultimate CNN model reduces the computational cost of the previous kinetic model by over 300 times and predicts the yields of main products with the average error of less than 3%. The obtained results demonstrate the high efficiency of the proposed framework. 展开更多
关键词 Convolutional neural network network MOTIF NAPHTHA PYROLYSIS KINETIC modeling
下载PDF
Neural Network and GBSM Based Time-Varying and Stochastic Channel Modeling for 5G Millimeter Wave Communications 被引量:7
19
作者 Xiongwen Zhao Fei Du +4 位作者 Suiyan Geng Ningyao Sun Yu Zhang Zihao Fu Guangjian Wang 《China Communications》 SCIE CSCD 2019年第6期80-90,共11页
In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN mod... In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall. 展开更多
关键词 TIME-VARYING CHANNEL neural network CLUSTER CHANNEL modeling VIRTUAL array measurement 5G
下载PDF
Adaptive RBF neural network control of robot with actuator nonlinearities 被引量:5
20
作者 Jinkun LIU, Yu LU (School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China) 《控制理论与应用(英文版)》 EI 2010年第2期249-256,共8页
In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinear... In this paper, an adaptive neural network control scheme for robot manipulators with actuator nonlinearities is presented. The control scheme consists of an adaptive neural network controller and an actuator nonlinearities compensator. Since the actuator nonlinearities are usually included in the robot driving motor, a compensator using radial basis function (RBF) network is proposed to estimate the actuator nonlinearities and eliminate their effects. Subsequently, an adaptive neural network controller that neither requires the evaluation of inverse dynamical model nor the time-consuming training process is given. In addition, GL matrix and its product operator are introduced to help prove the stability of the closed control system. Considering the adaptive neural network controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded (UUB). The whole scheme provides a general procedure to control the robot manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion. 展开更多
关键词 ADAPTIVE control rbf neural network ACTUATOR nonlinearity ROBOT MANIPULATOR DEADZONE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部