期刊文献+
共找到476篇文章
< 1 2 24 >
每页显示 20 50 100
Simulation of Dynamic Recrystallization in 7075 Aluminum Alloy Using Cellular Automaton
1
作者 赵晓东 SHI Dongxing +3 位作者 李亚杰 QIN Fengming CHU Zhibing YANG Xiaorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期425-435,共11页
The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution... The evolution of microstructure during hot deformation is key to achieving good mechanical properties in aluminum alloys.We have developed a cellular automaton(CA) based model to simulate the microstructural evolution in 7075 aluminum alloy during hot deformation.Isothermal compression tests were conducted to obtain material parameters for 7075 aluminum alloy,leading to the establishment of models for dislocation density,nucleation of recrystallized grains,and grain growth.Integrating these aspects with grain topological deformation,our CA model effectively predicts flow stress,dynamic recrystallization(DRX) volume fraction,and average grain size under diverse deformation conditions.A systematic comparison was made between electron back scattered diffraction(EBSD) maps and CA model simulated under different deformation temperatures(573 to 723 K),strain rates(0.001 to 1 s^(-1)),and strain amounts(30% to 70%).These analyses indicate that large strain,high temperature,and low strain rate facilitate dynamic recrystallization and grain refinement.The results from the CA model show good accuracy and predictive capability,with experimental error within 10%. 展开更多
关键词 cellular automaton dynamic recrystallization 7075 aluminum alloy hot compression
原文传递
High temperature deformation and recrystallization behavior of magnesium bicrystals with 90°<1010>and 90°<1120>tilt grain boundaries
2
作者 Kevin Bissa Talal Al-Samman Dmitri A.Molodov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期625-638,共14页
The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated un... The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature. 展开更多
关键词 Elevated deformation temperatures Plain strain compression Magnesium bicrystals Panorama EBSD Dynamic recrystallization
下载PDF
Variations in dynamic recrystallization behavior and mechanical properties of AZ31 alloy with extrusion temperature 被引量:1
3
作者 Jae Won Cha Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2351-2365,共15页
This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mecha... This study investigates the effects of extrusion temperature on the dynamic recrystallization(DRX)behavior of a Mg-3Al-1Zn-0.3Mn(AZ31,wt%)alloy during hot extrusion and on the microstructural characteristics and mechanical properties of materials extruded at 350 and 450℃.An increase in the extrusion temperature causes a decrease in the amount of strain energy accumulated in the material during extrusion,because of promoted activation of pyramidal<c+a>slip and dynamic recovery.This reduced strain energy weakens the DRX behavior during extrusion,which eventually results in a decrease in the area fraction of recrystallized grains of the extruded material.The material extruded at 450℃has coarser grains and a stronger basal fiber texture than that extruded at 350℃.As the extrusion temperature increases from 350 to 450℃,the tensile yield strength(TYS)of the extruded material increases from 191.8 to 201.5 MPa,whereas its compressive yield strength(CYS)decreases from 122.5 to 111.0 MPa;consequently,its tension-compression yield stress ratio(CYS/TYS)decreases from 0.64 to 0.55.The increase in the TYS is attributed mainly to the stronger texture hardening and strain hardening effects of the extruded material,and the decrease in the CYS is attributed to the reduced twinning stress resulting from grain coarsening and texture intensification.The microstructural and textural evolutions of the materials during extrusion and the deformation and hardening mechanisms of the extruded materials are discussed in detail. 展开更多
关键词 Mg-Al-Zn alloy EXTRUSION Dynamic recrystallization Microstructure Yield asymmetry
下载PDF
Controlling dynamic recrystallization via modified LPSO phase morphology and distribution in Mg-Gd-Y-Zn-Zr alloy 被引量:1
4
作者 Ce Zheng Shuaifeng Chen +3 位作者 Ming Cheng Shihong Zhang Yingju Li Yuansheng Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4218-4234,共17页
Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-densit... Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-density stacking faults, differentially spaced lamellar intragranular 14H-LPSO phases, and network intergranular 18R-LPSO phases with high-density intragranular stacking faults. Effects of these featured LPSO phases and stacking faults on dynamic recrystallization(DRX) behavior were investigated via hot compression. Promoted DRX behavior via particle stimulated nucleation(PSN) is introduced by coexisting intergranular island 18R and 14H LPSO phases and intragranular wide spacing lamellar 14H-LPSO phases, contributing the highest DRX fraction of 42.6%. Conversely, it is found that DRX behavior with network intergranular 18R-LPSO phases and dense intragranular stacking fault is considerably inhibited with the lowest fraction of 22.8%. That is, the restricted DRX due to dislocations pinning by stacking faults overwhelms the enhanced DRX behavior via PSN of island intergranular 18R and 14H LPSO phases. Specially, compared with dense intragranular lamellar 14H-LPSO phases, high-density stacking faults exert a larger inhibition effect on DRX behavior. 展开更多
关键词 Mg-Gd-Y-Zn-Zr Dynamic recrystallization LPSO phases Particle stimulated nucleation Stacking fault
下载PDF
Towards tailoring basal texture of rolled Mg alloy sheet by recrystallization for high room-temperature formability: A review
5
作者 T.Nakata S.Kamado 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期3992-4010,共19页
Room-temperature(RT) formability is a key factor to broaden the applications of rolled Mg alloy sheets in the industry. However, rolled Mg alloy sheets generally form strong basal texture, where the(0001) poles align ... Room-temperature(RT) formability is a key factor to broaden the applications of rolled Mg alloy sheets in the industry. However, rolled Mg alloy sheets generally form strong basal texture, where the(0001) poles align parallel to the normal direction(ND). This hinders the activation of(0001) [1120] basal slip, limiting the RT formability. Therefore, texture weakening, i.e., the inclination of the(0001) poles from the ND, plays an important role to improve the RT formability. Recrystallization is crucial to control the textural development in Mg,and currently, the texture weakening is commonly achieved using static recrystallization(SRX). However, the type of slipping and twinning,which are activated during rolling, affect the textural features after SRX. It is also demonstrated that shear bands and preferential grain growth are important factors to tailor the texture during SRX. Indeed, dynamic recrystallization(DRX) easily occurs during rolling in Mg, which also affects the final rolling texture, while the effect of DRX on the textural formation is not extensively studied for the development of RT-formable Mg alloy sheets. Therefore, the effect of these factors on the textural development in rolled Mg is reviewed in this manuscript.Additionally, the ideal microstructure and texture for RT-formable Mg alloy sheets are still controversial. The RT-formability includes stretch forming(biaxial tension), bending(plane strain tension), and deep-drawing. In particular, the stretch forming is commonly used to evaluate the RT-formability of rolled Mg. Although the stretch formability has been improved by recent studies, the further improvement is necessary owing to the relatively low formability of rolled Mg compared with that of rolled Fe and Al. Based on the relationship between the microstructure/texture and stretch formability provided in the literature, the design guidance for high stretch formability is proposed in this review. 展开更多
关键词 Magnesium alloy Rolling recrystallization TEXTURE FORMABILITY
下载PDF
Origin of extension twinning-mediated static recrystallization and unique parallel alignment of(0001) poles to transverse direction in Mg-3Al-0.4Mn(mass%) alloy sheet
6
作者 T.Nakata C.Xu +1 位作者 L.Geng S.Kamado 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3200-3213,共14页
The origin of unique parallel alignment of(0001) poles to transverse direction(TD) was investigated using Mg-3Al-0.4Mn(mass%)alloy sheets rolled with different process conditions. When rolling was performed with inter... The origin of unique parallel alignment of(0001) poles to transverse direction(TD) was investigated using Mg-3Al-0.4Mn(mass%)alloy sheets rolled with different process conditions. When rolling was performed with intermediate reheating, the alloy showed a sluggish static recrystallization(SRX) behavior during post-annealing, facilitating the nucleation and growth of statically recrystallized grains from extension twins. This resulted in the apparent texture component with the parallel alignment of the(0001) poles to the TD, and the sheet exhibited good ductility for both the rolling direction(RD) and TD. In contrast, continuous rolling without intermediate reheating led to the formation of severely deformed regions near double twins. SRX was promoted at such regions, forming a typical basal textural feature with weak RD-split of the(0001) poles. Although extension twins were formed after the continuous rolling, SRX was facilitated at the severely deformed regions with double twins, and the formation of the unique alignment of the(0001) poles to the TD was suppressed. The RD-split texture led to the large elongation to failure along the RD, while it along the TD decreased owing to the narrow distribution of the(0001)poles toward the TD, resulting in the in-plane anisotropy in ductility. 展开更多
关键词 Magnesium Rolling TWINNING Static recrystallization Texture
下载PDF
Dissolution and reprecipitation of 14H-LPSO structure accompanied by dynamic recrystallization in hot-extruded Mg_(89)Y_(4)Zn_(2)Li_(5) alloy
7
作者 Wei Liu Yu Su +3 位作者 Yuntao Zhang Liwen Chen Hua Hou Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1408-1421,共14页
We investigate the variation induced in long-period stacking ordered(LPSO)structures,dynamic recrystallization(DRX),and mechanical performance of hot-extruded Mg89Y4Zn2Li5 alloys fabricated at different extrusion spee... We investigate the variation induced in long-period stacking ordered(LPSO)structures,dynamic recrystallization(DRX),and mechanical performance of hot-extruded Mg89Y4Zn2Li5 alloys fabricated at different extrusion speeds(Ve=0.4,0.8,1.0,1.2 mm/s)and die angles(α=30°,60°,90°)under 400℃,the dissolution and reprecipitation of 14H LPSO structure accompanied by DRX process are then clarified in detail.Upon all extrusion conditions,the block 18R LPSO structures elongate in the extrusion direction,while the lamellar 14H LPSO structures dissolve under the deformation strain.In addition,due to discontinuous and continuous DRX mechanisms,all hot-extruded alloys have a full DRX microstructure consisting of equiaxed recrystallized grains,but the DRX grain size reduces when both extrusion speed and die angle decrease.Note that,in the interior of DRX grains,thin LPSO lamellae mixing 14H,18R and 24R structures nucleate and dynamically precipitate due to the dissolution of the original lamellar 14H LPSO structures.Furthermore,the hot-extruded Mg_(89)Y_(4)Zn_(2)Li_(5)alloy becomes stronger as decreasing of the extrusion speed and die angle,whereas the ductility remains nearly constant.Finally,the hotextruded Mg_(89)Y_(4)Zn_(2)Li_(5)alloy achieves an excellent strength-ductility balance at a relatively low extrusion speed(0.4 mm/s)and small die angle(30°)mainly due to the elongated 18R LPSO structure,fine and full DRX microstructure,thin mixed LPSO precipitates in the DRX grains,twins and dislocations. 展开更多
关键词 Magnesium Extrusion LPSO recrystallization Precipitation
下载PDF
Influence of Ca addition on the dynamic and static recrystallization behavior of direct extruded flat profiles of Mg-Y-Zn alloy
8
作者 Maria Nienaber Jan Bohlen +3 位作者 Sangbong Yi Gerrit Kurz Karl Ulrich Kainer Dietmar Letzig 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3736-3748,共13页
This paper investigates the influence of addition of Ca in a Y-Zn-containing magnesium alloy on the dynamic and static recrystallization behaviors and reveals the formation mechanism of the quadrupole texture during t... This paper investigates the influence of addition of Ca in a Y-Zn-containing magnesium alloy on the dynamic and static recrystallization behaviors and reveals the formation mechanism of the quadrupole texture during thermomechanical processing. Direct extrusion of flat bands has been conducted at various process conditions to study the difference between the two alloys WZ10 and WZX100 in terms of microstructure and texture development. It can be shown that, Ca addition promotes the DRX of WZ10 alloy. During additional heat treatment,the absence of Y segregation at the grain boundaries and the associated lack of solute drag to the boundary mobility leads to a pronounced grain growth during SRX in WZX100 alloy. Furthermore, it is shown that the addition of Ca to Y-Zn is not beneficial in terms of formability.It is demonstrated that alloying elements can have different effects depending on the recrystallization mechanisms. Partially recrystallized microstructure is a prerequisite at the as-extruded status to form the quadrupole texture and during subsequent annealing, which stands for high formability. 展开更多
关键词 Extrusion recrystallization Magnesium alloy Mg-Y-Zn-Ca alloy FORMABILITY quadrupole texture
下载PDF
Dynamic Recrystallization Behavior of Q370qE Bridge Steel
9
作者 Caiyi Liu Shicheng Liang +6 位作者 Yan Peng Jianliang Sun Carlo Mapelli Silvia Barella Andrea Gruttadauria Marco Belf Ludovica Rovatti 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期330-340,共11页
Bridge steel has been widely used in recent years for its excellent performance. Understanding the high-temperature Dynamic Recrystallization (DRX) behavior of high-performance bridge steel plays an important role in ... Bridge steel has been widely used in recent years for its excellent performance. Understanding the high-temperature Dynamic Recrystallization (DRX) behavior of high-performance bridge steel plays an important role in guiding the thermomechanical processing process. In the present study, the hot deformation behavior of Q370qE bridge steel was investigated by hot compression tests conducted on a Gleeble 3800-GTC thermal-mechanical physical simulation system at temperatures ranging from 900 ℃ to 1100 ℃ and strain rates ranging from 0.01 s^(−1) to 10 s^(−1). The obtained results were used to plot the true stress-strain and work-hardening rate curves of the experimental steel, with the latter curves used to determine the critical strains for the initiation of DRX. The Zener-Hollomon equation was subsequently applied to establish the correspondence between temperature and strain rate during the high-temperature plastic deformation of bridge steel. In terms of the DRX volume fraction solution, a new method for establishing DRX volume fraction was proposed based on two theoretical models. The good weathering and corrosion resistance of bridge steel lead to difculties in microstructure etching. To solve this, the MTEX technology was used to further develop EBSD data to characterize the original microstructure of Q370qE bridge steel. This paper lays the theoretical foundation for studying the DRX behavior of Q370qE bridge steel. 展开更多
关键词 Dynamic recrystallization Materials characterization Hot deformation DRX volume fraction model
下载PDF
Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel
10
作者 Shaolong Sheng Yanxin Qiao +2 位作者 Ruzong Zhai Mingyue Sun Bin Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2386-2396,共11页
The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates.The microstructural evolutions were also stud... The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates.The microstructural evolutions were also studied using electron backscatter diffraction.The flow stress decreases with the increasing temperature and decreasing strain rate.A constitutive equation was established to characterize the relationship among the deformation parameters,and the deformation activation energy was calculated to be 497.92 k J/mol.Processing maps were constructed to describe the appropriate processing window,and the optimum processing parameters were determined at a temperature of 1107-1160℃ and a strain rate of 0.005-0.026 s^(-1).Experimental results showed that the main nucleation mechanism is discontinuous dynamic recrystallization(DDRX),followed by continuous dynamic recrystallization(CDRX).In addition,the formation of twin boundaries facilitated the nucleation of dynamic recrystallization. 展开更多
关键词 austenitic stainless steel processing map dynamic recrystallization constitutive equation
下载PDF
Flow softening and dynamic recrystallization behavior of a Mg-Gd-Y-Nd-Zr alloy under elevated temperature compressions
11
作者 Yiping WU Yuzhen JIA +3 位作者 Sha Zhang Yu Liu Hanqing Xiong Gang Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2891-2900,共10页
Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by opti... Flow softening behavior of a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy under compression to a final strain of∼1.8 at elevated temperatures of 450∼550℃ and a constant strain rate of 2s^(−1) has been investigated by optical microscopy,scanning electron microscopy,electron back-scattered diffraction and transmission electron microscopy.The results show that true stress first rises to the peak point and then drops to the bottom value and increases again with further increasing strain at each temperature.Twinning dynamic recrystallization(DRX)and continuous DRX contribute to the formation of new fine grains at temperatures 450∼475℃ when the restoration is caused by both DRX and texture change due to extension twinning,resulting in the larger softening degrees compared with the softening effects owing to continuous DRX and discontinuous DRX at 500∼550℃ when twinning activation is suppressed.500℃ is the transition temperature denoting a significant decline in the contribution of twinning and TDRX to the strain with increasing temperature.The cuboid-shape phase exists in both homogenized and compressed samples,while the compositions are varied. 展开更多
关键词 Mg-Gd-Y alloy Elevated temperature compression Flow softening Dynamic recrystallization
下载PDF
Grain refinement and weak-textured structures based on the dynamic recrystallization of Mg–9.80Gd–3.78Y–1.12Sm–0.48Zr alloy 被引量:3
12
作者 Yunwei Gui Lingxiao Ouyang +3 位作者 Yujie Cui Huakang Bian Quanan Li Akihiko Chiba 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期456-466,共11页
We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusi... We utilized electron backscatter diffraction to investigate the microstructure evolutions of a newly developed magnesium-rare earth alloy(Mg–9.80 Gd–3.78 Y–1.12 Sm–0.48 Zr)during instantaneous hot indirect extrusion.An equiaxed fine-grained(average grain size of 3.4±0.2μm)microstructure with a weak texture was obtained.The grain refinement was mainly attributed to the discontinuous dynamic recrystallization(DDRX)and continuous DRX(CDRX)processes during the hot indirect extrusion process.The twin boundaries formed during the initial deformation stage effectively increased the number of high angle grain boundaries(HAGBs),which provided sites for new grain nuclei,and hence,resulted in an improved DDRX process.Along with DDRX,CDRX processes characterized by low angle grain boundary(LAGB)networks were also observed in the grain interior due to effective dynamic recovery(DRV)at a relatively high temperature of 773 K and high strain rates.Thereafter,LAGB networks were transformed into HAGB networks by the progressive rotation of subgrains during the CDRX process. 展开更多
关键词 Magnesium-rare earth(Mg-Re)alloy Grain refinement Discontinuous dynamic recrystallization(DDRX) Continuous dynamic recrystallization(CDRX) Hot indirect extrusion
下载PDF
DYNAMIC RECOVERY AND DYNAMIC RECRYSTALLIZATION OF 7005 ALUMINIUM ALLOY DURING HOT COMPRESSION 被引量:33
13
作者 J. Shen S. S. Xie and J. H. tang (General Research Institute for Non - ferrous Metals,Beijing 100088, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期379-386,共8页
Dynamic recovery and dynamic recrystallizatin behaviors of AA7005 aluminium alloy (Al - Zn - Mg) during hot compression are investigated by isothermal compression testing.The interdependence of flow stress,stress, str... Dynamic recovery and dynamic recrystallizatin behaviors of AA7005 aluminium alloy (Al - Zn - Mg) during hot compression are investigated by isothermal compression testing.The interdependence of flow stress,stress, strain rate,true strain and deformation temperature for the alloy is analyzed by introduc- ing Zener-Hollomon parameter. A steady - state flow of the 7005 alloy is confirmed to be a thermal- ly activated process.which is governed by rate-controlling mechanisms of dislocations.A hyperbolic sine relationship can satisfactorily correlate temperature, strain rate with flow stress through an Arrhe- nius term that involves thermal activation parameters. The dynamic recovery mechanisms of the alloy are discussed.Cross- slip of jogged screw dislocations is the main dynamic recovery mechanism over the deformation temperatures and strain rates.Subgrains are highly developed in the originally elongat- ed grains.The size of the subgrain increases with decrease of the natural logarithm of Zener- Hol - lomon parameter.Local dynamic recrystallization is operative when the alloy is deformed at temperature of 500℃ and strain rate of 0. 001s - 1. 展开更多
关键词 compression flow stress DYNAMIC recovery DYNAMIC recrystallization RESTORATION mechanism
下载PDF
INTERACTION OF PRECIPITATION AND RECRYSTALLIZATION IN RAPIDLY SOLIDIFIED Cu-Cr-Zr-Mg ALLOY 被引量:11
14
作者 Liu, P. Kang, B.X. +3 位作者 Cao, X.G. Huang, J.L. Yin, B. Gu, H.C. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第3期273-275,576-277,共5页
In this paper; the recrystallization process during aging for a rapidly solidified Cu-Cr-Zr-Mg alloy has been investigated. It is found that the discotinuous crystallization process has been partially retarded by the ... In this paper; the recrystallization process during aging for a rapidly solidified Cu-Cr-Zr-Mg alloy has been investigated. It is found that the discotinuous crystallization process has been partially retarded by the ultra-fine and dispersed precipitation upon aging after deformation. Thus, a phenomenon of combined in situ and discontinuous recrystallization has been observed in the rapidly solidified Cu-Cr-Zr-Mg alloy.On the nucleation and growth of recrystallization, the precipitated phases are coarscned and dissolved in the front of grain boundaries following a re-precipitation in the recrystallization area,which results in the much more dispersed precipitates. 展开更多
关键词 RAPID SOLIDIFICATION Cu-Cr-Zr-Mg alloy AGING PRECIPITATION recrystallization
下载PDF
Integral Recrystallization Modelling 被引量:7
15
作者 G. Gottstein, V. Marx, R. Sebald Institut furr Metallkunde und Metallphysik, RWTH Aachen, 52056 Aachen, Germany 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期49-57,共9页
We present models designed to represent the evolution of microstructure and crystallographic texture during recrystallization. For engineering applications the models are tied to a finite element approach. A connectio... We present models designed to represent the evolution of microstructure and crystallographic texture during recrystallization. For engineering applications the models are tied to a finite element approach. A connection to the deformed microstructure is established by dislocation theory of work hardening and Taylor type texture simulations. For temporal and spatial resolution a modified cellular automaton model was developed. A fast statistical approach for prediction of recrystallization kinetics and texture development discrete in time is presented. Predictions of the models are compared with experimental data. 展开更多
关键词 modelling cellular AUTOMATON STATISTICAL model primary STATIC recrystallization recovery crystallographic ORIENTATION
下载PDF
Influence of Rolling Reductions on Recrystallization Texture in Commercially Pure Al 被引量:6
16
作者 毛卫民 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第4期257-262,共6页
The recrystallization texture in commerciallypure Al is investigated after the samples are rolleddifferently and annealed.The samples with low rol-ling reductions could be generally recovered orrecrystallized in situ ... The recrystallization texture in commerciallypure Al is investigated after the samples are rolleddifferently and annealed.The samples with low rol-ling reductions could be generally recovered orrecrystallized in situ and characterized by the re-tained G{110}【001】component.This recoveryprocess decreases during annealing with the increaseof reduction.The appearance of the B/R{359}.【132】and R{123}【634】components de-pending on the rolling reduction is investigated andthe less developed Cube{100}【001】componentin commercially pure ahninium is also discussed. 展开更多
关键词 recrystallization TEXTURE aluminium orientation distribution function (ODF)
下载PDF
The effect of Y,Ce and Gd on texture,recrystallization and mechanical property of Mg-Zn alloys 被引量:9
17
作者 Peng Liu Haitao Jiang +2 位作者 Zhengxu Cai Qiang Kang Yun Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第3期188-196,共9页
The effect of Gd,Ce and Y elements on texture,recrystallization and mechanical properties of Mg–1.5Zn alloys was investigated.The results show that the addition of Gd,Ce and Y elements in Mg–1.5Zn alloy,which rolled... The effect of Gd,Ce and Y elements on texture,recrystallization and mechanical properties of Mg–1.5Zn alloys was investigated.The results show that the addition of Gd,Ce and Y elements in Mg–1.5Zn alloy,which rolled at 450℃ and subsequently annealed at 350℃ for 1h,can effectively weaken and modify the basal texture,characterized by the splitting basal pole toward to transverse direction,leading to the yield and tensile strength,the highest along the rolling direction and the lowest along the transverse direction.Besides,the unique basal texture contributes to the significant improvement of elongation at room temperature.Electron back scattering diffraction(EBSD)analysis indicated that the non-basal texture in Mg–1.5Zn–0.2RE alloys can be attributed to obstructive effect of static recrystallization and the non-basal orientation grains nucleation near pre-existing grain boundaries during annealing.Specially,the Mg–1.5Zn–0.2Gd sheet exhibits much excellent plasticity with the elongation of 27%than Mg–1.5Zn–0.2Ce and Mg–1.5Zn–0.2Y alloys,resulting from the less and smaller second phase of MgZnGd. 展开更多
关键词 Magnesium alloys TEXTURE recrystallization Rare earth element MICROSTRUCTURE
下载PDF
Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates 被引量:8
18
作者 Guo, Qingmiao Li, Defu +3 位作者 Peng, Haijian Guo, Shengli Hu, Jie Du, Peng 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期215-220,共6页
The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot... The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s-1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate. 展开更多
关键词 nucleation mechanisms dynamic recrystallization Inconel 625 superalloy deformation strain rate
下载PDF
Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61+Sr magnesium alloys 被引量:7
19
作者 S.Aliakbari Sani G.R.Ebrahimi A.R.Kiani Rashid 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第2期104-114,共11页
In this study,the effect of strontium addition on hot deformation of AZ61 alloy was investigated by hot compression tests.A reference alloy(AZ61)and an Sr-containing alloy(AZ61+Sr)was cast while their average initial ... In this study,the effect of strontium addition on hot deformation of AZ61 alloy was investigated by hot compression tests.A reference alloy(AZ61)and an Sr-containing alloy(AZ61+Sr)was cast while their average initial grain size were supposed to be about 140 and 40μm,respectively.In AZ61+Sr alloy,the Sr-containing precipitations were stable at homogenization temperature.Analysing the hot compression curves,it was revealed that dynamic recrystallization phenomenon had occurred and controlled the thermomechanical behaviour of the alloys.The derived constitutive equations showed that the hot deformation parameters(n and Q)in AZ61+Sr alloy is smaller than those of AZ61 alloy;this can be related to the small initial grain size and the lower amounts of solute aluminium atoms.The analysis of DRX kinetics along with the micrographs of the deformed microstructures showed that at the same condition the development of DRXed microstructure in AZ61+Sr alloy was faster than AZ61 alloy.The increased recrystallized microstructure was interpretated to be attributed to(1)the more grain boundaries present and(2)the existance of the Al-Mg-Sr precipitations assisted the PSN mechanism.Also,the attenuated intensity of the basal texture of AZ61+Sr was related to the DRX fraction of microstructure. 展开更多
关键词 AZ61 alloy STRONTIUM DRX Grain size PSN Dynamic recrystallization kinetics
下载PDF
Dynamic recrystallization during hot torsion of Al-9Mg alloy 被引量:5
20
作者 林均品 程荆卫 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第4期799-805,共7页
关键词 Al-9Mg alloy dynamic recrystallization TORSION stacking FAULTS
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部