The advent of antiproliferative drug-eluting vascular stents can dramatically reduce in-stent restenosis via inhibiting the hyperproliferation of vascular smooth muscle cells.However,the antiproliferative drugs also r...The advent of antiproliferative drug-eluting vascular stents can dramatically reduce in-stent restenosis via inhibiting the hyperproliferation of vascular smooth muscle cells.However,the antiproliferative drugs also restrain the repair of the injured endothelial layer,which in turn leads to the very later in-stent restenosis.Evidence points that competent endothelium plays a critical role in guaranteeing the long-term patency via maintaining vascular homeostasis.Boosting the regeneration of endothelium on the implanted vascular stents could be rendered as a promising strategy to reduce stent implantation complications.In this regard,bioactive zinc(II)metal-organic framework modified with endothelial cell-targeting Arg-Glu-Asp-Val peptide was embedded in poly(lactide-co-caprolactone)to serve as a functional coating on the surface of titanium substrate,which can promote the proliferation and migration of endothelial cells.The in vitro cell experiments revealed that the zinc(II)metal-organic framework embedded in the polymer coating was able to modulate the behaviors of endothelial cells owing to the bioactive effects of zinc ion and peptide.Our results confirmed that zinc(II)metal-organic framework eluting coating represented a new possibility for promoting the repair of the damaged endothelium with potential clinical implications in vascular-related biomaterials and tissue engineering applications.展开更多
基金supported by National Natural Science Foundation of China (Grant No.52373151).
文摘The advent of antiproliferative drug-eluting vascular stents can dramatically reduce in-stent restenosis via inhibiting the hyperproliferation of vascular smooth muscle cells.However,the antiproliferative drugs also restrain the repair of the injured endothelial layer,which in turn leads to the very later in-stent restenosis.Evidence points that competent endothelium plays a critical role in guaranteeing the long-term patency via maintaining vascular homeostasis.Boosting the regeneration of endothelium on the implanted vascular stents could be rendered as a promising strategy to reduce stent implantation complications.In this regard,bioactive zinc(II)metal-organic framework modified with endothelial cell-targeting Arg-Glu-Asp-Val peptide was embedded in poly(lactide-co-caprolactone)to serve as a functional coating on the surface of titanium substrate,which can promote the proliferation and migration of endothelial cells.The in vitro cell experiments revealed that the zinc(II)metal-organic framework embedded in the polymer coating was able to modulate the behaviors of endothelial cells owing to the bioactive effects of zinc ion and peptide.Our results confirmed that zinc(II)metal-organic framework eluting coating represented a new possibility for promoting the repair of the damaged endothelium with potential clinical implications in vascular-related biomaterials and tissue engineering applications.