Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss.This study aimed to assess the potential effect of the DNA methyltransferase(DNMT)inhibitor RG108 on ci...Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss.This study aimed to assess the potential effect of the DNA methyltransferase(DNMT)inhibitor RG108 on cisplatin-induced ototoxicity.Immunohistochemistry,apoptosis assay,and auditory brainstem response(ABR)were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells(HCs)and spiral ganglion neurons(SGNs).Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential(MMP)assessment.Reactive oxygen species(ROS)amounts were evaluated by Cellrox green and Mitosox-red probes.Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates(OCRs).The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs,and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation.Furthermore,RG108 upregulated BCL-2 and downregulated APAF1,BAX,and BAD in HEI-OC1 cells,and triggered the PI3K/AKT pathway.Decreased expression of low-density lipoprotein receptor-related protein 1(LRP1)and high methylation of the LRP1 promoter were observed after cisplatin treatment.RG108 treatment can increase LRP1expression and decrease LRP1 promoter methylation.In conclusion,RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.展开更多
基金was supported by grants from the National Key R&D Program of China(No.2017YFA0103900)the National Natural Science Foundation of China(Nos.82071045,81870728,81830029,and 81970875)Shanghai Rising-Star Program(19QA1401800)。
文摘Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss.This study aimed to assess the potential effect of the DNA methyltransferase(DNMT)inhibitor RG108 on cisplatin-induced ototoxicity.Immunohistochemistry,apoptosis assay,and auditory brainstem response(ABR)were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells(HCs)and spiral ganglion neurons(SGNs).Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential(MMP)assessment.Reactive oxygen species(ROS)amounts were evaluated by Cellrox green and Mitosox-red probes.Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates(OCRs).The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs,and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation.Furthermore,RG108 upregulated BCL-2 and downregulated APAF1,BAX,and BAD in HEI-OC1 cells,and triggered the PI3K/AKT pathway.Decreased expression of low-density lipoprotein receptor-related protein 1(LRP1)and high methylation of the LRP1 promoter were observed after cisplatin treatment.RG108 treatment can increase LRP1expression and decrease LRP1 promoter methylation.In conclusion,RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.