Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the ...Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.展开更多
In this work,we have developed a sensitive,simple,and enzyme-free assay for detection of micro RNAs(mi RNAs)by means of a DNA molecular motor consisting of two stem-loop DNAs with identical stems and complementary loo...In this work,we have developed a sensitive,simple,and enzyme-free assay for detection of micro RNAs(mi RNAs)by means of a DNA molecular motor consisting of two stem-loop DNAs with identical stems and complementary loop domains.In the presence of mi RNA target,it can hybridize with one of the stem-loop DNA to open the stem and to produce a mi RNA/DNA hybrid and a single strand(ss)DNA,the ss DNA will in turn hybridize with another stem-loop DNA and finally form a double strand(ds)DNA to release the mi RNA.One of the stem-loop DNA is double-labeled by a fluorophore/quencher pair with efficiently quenched fluorescence.The formation of ds DNA can produced specific fluorescence signal for mi RNA detection.The released mi RNA will continuously initiate the next hybridization of the two stem-loop DNAs to form a cycle-running DNA molecular motor,which results in great fluorescence amplification.With the efficient signal amplification,as low as 1 pmol/L mi RNA target can be detected and a wide dynamic range from 1 pmol/L to 2 nmol/L is also obtained.Moreover,by designing different stem-loop DNAs specific to different mi RNA targets and labeling them with different fluorophores,multiplexed mi RNAs can be simultaneously detected in one-tube reaction with the synchronous fluorescence spectrum(SFS)technique.展开更多
Epithelial ovarian cancer(EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biologic...Epithelial ovarian cancer(EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biological markers(mRNA and proteins biomarkers), the mortality rate of ovarian cancer remains a challenge because of its late diagnosis, which is specifically attributed to low specificities and sensitivities. Under this compulsive scenario, recent advances in expression biology have shifted in identifying and developing specific and sensitive biomarkers, such as micro RNAs(miRNAs) for cancer diagnosis and prognosis. MiRNAs are a novel class of small non-coding RNAs that deregulate gene expression at the posttranscriptional level, either by translational repression or by mRNA degradation. These mechanisms may be involved in a complex cascade of cellular events associated with the pathophysiology of many types of cancer. MiRNAs are easily detectable in tissue and blood samples of cancer patients. Therefore, miRNAs hold good promise as potential biomarkers in ovarian cancer. In this review, we attempted to provide a comprehensive profile of key miRNAs involved in ovarian carcinoma to establish mi RNAs as more reliable non-invasive clinical biomarkers for early detection of ovarian cancer compared with protein and DNA biomarkers.展开更多
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and p...RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging.Recently,more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating.Due to the flexibility and deformability of nucleic acids,the nanoassemblies could be fabricated with different shapes and structures.With hybridization,nucleic acid nanoassemblies,including DNA and RNA nanostructures,can be applied to enhance RNA therapeutics and diagnosis.This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.展开更多
Array based detection techniques with fluorescence signal reading is a powerful tool for multiple targets analysis. However,when applied fluorescence array for micro RNA detection, time-consuming multi-steps surface s...Array based detection techniques with fluorescence signal reading is a powerful tool for multiple targets analysis. However,when applied fluorescence array for micro RNA detection, time-consuming multi-steps surface signal amplification is usually required due to the low abundance of micro RNA in total RNA expressions, which impairs detection efficiency and limits its application in point of care test(POCT) manner. Herein, DNA cascade reactors(DCRs) functionalized photonic crystal(PC)array was fabricated for express and sensitive detections of mi RNA-21 and mi RNA-155. DCRs were assembled by interval conjugation of self-quenched hairpin DNA probes to single strand DNA nanowire synthesized by rolling circle amplification,which generated cascade DNA hybridization reactions in response to target mi RNAwith instant fluorescence recovery signal. PC array patterns with multi-structure colors further amplified fluorescence with their respective photonic bandgaps(PBGs)matching with the emission peaks of fluorescence molecules labelled on DCRs. The as-prepared DCRs functionalized PC array demonstrated express and sensitive simultaneous detections of mi RNA-21 and mi RNA-155 with hundreds f M detection limits only in 15 min, and was successfully applied in fast quantifications of low abundance mi RNAs from cell lysates and spiked mi RNAs from human serum, which would hold great potential for disease diagnosis and therapeutic effect monitoring with a POCT manner.展开更多
High-throughput sequencing has identified a large number of sense-antisense transcriptional pairs, which indicates that these genes were transcribed from both directions. Recent reports have demonstrated that many ant...High-throughput sequencing has identified a large number of sense-antisense transcriptional pairs, which indicates that these genes were transcribed from both directions. Recent reports have demonstrated that many antisense RNAs, especially lnc RNA(long non-coding RNA), can interact with the sense RNA by forming an RNA duplex. Many methods, such as RNA-sequencing, Northern blotting, RNase protection assays and strand-specific PCR, can be used to detect the antisense transcript and gene transcriptional orientation. However, the applications of these methods have been constrained, to some extent, because of the high cost, difficult operation or inaccuracy, especially regarding the analysis of substantial amounts of data. Thus, we developed an easy method to detect and validate these complicated RNAs. We primarily took advantage of the strand specificity of RT-PCR and the single-strand specificity of S1 endonuclease to analyze sense and antisense transcripts. Four known genes, including mouse β-actin and Tsix(Xist antisense RNA), chicken LXN(latexin) and GFM1(Gelongation factor, mitochondrial 1), were used to establish the method. These four genes were well studied and transcribed from positive strand, negative strand or both strands of DNA, respectively, which represented all possible cases. The results indicated that the method can easily distinguish sense, antisense and sense-antisense transcriptional pairs. In addition, it can be used to verify the results of high-throughput sequencing, as well as to analyze the regulatory mechanisms between RNAs. This method can improve the accuracy of detection and can be mainly used in analyzing single gene and was low cost.展开更多
The intrinsic affinity of DNA molecules toward metallic ions can drive the specific formation of copper nanostructures within the nucleic acid helix structure in a sequence-dependent manner. The resultant nanostructur...The intrinsic affinity of DNA molecules toward metallic ions can drive the specific formation of copper nanostructures within the nucleic acid helix structure in a sequence-dependent manner. The resultant nanostructures have interesting fluorescent and electrochemical properties, which are attractive for novel biosensing applications. However, the potential of using DNA-templated nano- structures for precision disease diagnosis remains unexplored. Particularly, DNA- templated nanostructures show high potential for the universal amplification-free detection of different RNA biomarker species. Because of their low cellular levels and differing species-dependent length and sequence features, simultaneous detection of different messenger RNAs, microRNAs, and long non-coding RNAs species with a single technique is challenging. Here, we report a contemporary technique for facile in situ assembly of DNA-templated copper nanoblocks (CuNBs) on various RNA species targets after hybridization-based magnetic isolation. Our approach circumvents the typical limitations associated with amplification and labeling procedures of current RNA assays. The synthesized CuNBs enabled amplification-free fM-level RNA detection with flexible fluorescence or electrochemical readouts. Furthermore, our nanosensing technique displays potential for clinical application, as demonstrated by non-invasive analysis of three diagnostic RNA biomarkers from a cohort of 10 prostate cancer patient urinary samples with 100%-concordance (quantitative reverse transcription- polymerase chain reaction (PCR) validation). The good analytical performance and versatility of our method may be useful in both diagnostics and research fields.展开更多
CRISPR-Cas technologies have greatly reshaped the biology field.In this review,we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a,which h...CRISPR-Cas technologies have greatly reshaped the biology field.In this review,we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a,which have been most widely studied and used.We discuss the biological mechanisms of CRISPR-Cas as immune defense systems,recently-discovered anti-CRISPR-Cas systems,and the emerging Cas variants(such as xCas9 and Cas13)with unique characteristics.Then,we highlight various CRISPR-Cas biotechnologies,including nucleasedependent genome editing,CRISPR gene regulation(including CRISPR interference/activation),DNA/RNA base editing,and nucleic acid detection.Last,we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.展开更多
Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs, RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in Dictyostelium discoideum) can be characterized by a pattern of short...Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs, RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in Dictyostelium discoideum) can be characterized by a pattern of short but well-conserved sequence elements that are separated by poorly conserved regions of sometimes highly variable lengths. Local alignment algorithms such as BLAST are therefore ill-suited for the discovery of new homologs of such ncRNAs in genomic sequences. The Fragrep tool instead implements an efficient algorithm for detecting the pattern fragments that occur in a given order. For each pattern fragment, the mismatch tolerance and bounds on the length of the intervening sequences can be specified separately. Furthermore, matches can be ranked by a statistically well-motivated scoring scheme.展开更多
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Science and Engineering under an award FWP 65357 at Pacific Northwest National Laboratory(PNNL)the Cougar Cage Fund for the work of biological imaging and detection of microRNA.Development of peptoid synthesis capabilities was supported by the Materials Synthesis and Simulation Across Scales(MS3)Initiative through the Laboratory Directed Research and Development(LDRD)program at PNNL.XRD work was conducted at the Advanced Light Source(ALS)of Lawrence Berkeley National Laboratory+1 种基金supported by the Office of Science(No.DE-AC02-05CH11231)PNNL is multi-program national laboratory operated for Department of Energy by Battelle(No.DE-AC05-76RL01830).
文摘Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.
基金the National Natural Science Foundation of China(21335005,21472120)the Fundamental Research Funds for the Central Universities(GK201501003,GK201303003)the Excellent Doctor Innovation Project of Shaanxi Normal University
文摘In this work,we have developed a sensitive,simple,and enzyme-free assay for detection of micro RNAs(mi RNAs)by means of a DNA molecular motor consisting of two stem-loop DNAs with identical stems and complementary loop domains.In the presence of mi RNA target,it can hybridize with one of the stem-loop DNA to open the stem and to produce a mi RNA/DNA hybrid and a single strand(ss)DNA,the ss DNA will in turn hybridize with another stem-loop DNA and finally form a double strand(ds)DNA to release the mi RNA.One of the stem-loop DNA is double-labeled by a fluorophore/quencher pair with efficiently quenched fluorescence.The formation of ds DNA can produced specific fluorescence signal for mi RNA detection.The released mi RNA will continuously initiate the next hybridization of the two stem-loop DNAs to form a cycle-running DNA molecular motor,which results in great fluorescence amplification.With the efficient signal amplification,as low as 1 pmol/L mi RNA target can be detected and a wide dynamic range from 1 pmol/L to 2 nmol/L is also obtained.Moreover,by designing different stem-loop DNAs specific to different mi RNA targets and labeling them with different fluorophores,multiplexed mi RNAs can be simultaneously detected in one-tube reaction with the synchronous fluorescence spectrum(SFS)technique.
基金the ICMR New Delhi for financial support (Grant No. 3/2/2/136/2012/NCD-Ⅲ)
文摘Epithelial ovarian cancer(EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biological markers(mRNA and proteins biomarkers), the mortality rate of ovarian cancer remains a challenge because of its late diagnosis, which is specifically attributed to low specificities and sensitivities. Under this compulsive scenario, recent advances in expression biology have shifted in identifying and developing specific and sensitive biomarkers, such as micro RNAs(miRNAs) for cancer diagnosis and prognosis. MiRNAs are a novel class of small non-coding RNAs that deregulate gene expression at the posttranscriptional level, either by translational repression or by mRNA degradation. These mechanisms may be involved in a complex cascade of cellular events associated with the pathophysiology of many types of cancer. MiRNAs are easily detectable in tissue and blood samples of cancer patients. Therefore, miRNAs hold good promise as potential biomarkers in ovarian cancer. In this review, we attempted to provide a comprehensive profile of key miRNAs involved in ovarian carcinoma to establish mi RNAs as more reliable non-invasive clinical biomarkers for early detection of ovarian cancer compared with protein and DNA biomarkers.
基金supported by the National Science Foundation of China(No.82003689,to Mengnan Zhao,China)the Outstanding Young Scientific Talent Foundation of Sichuan Province(No.2022JDJQ0052,to Sanjun Shi,China)+3 种基金the China Postdoctoral Science Foundation(No.2021M690489,to Mengnan Zhao,China)the Project of High-Level Talents in Sichuan Province(No.003113014003,to Sanjun Shi,China)the International Postdoctoral Exchange Fellowship Program(No.YJ20200040,to Mengnan Zhao,China)the Xinglin Scholar Research Promotion Project of Chengdu University of Traditional Chinese Medicine(No.BSH2020006,to Mengnan Zhao,China).
文摘RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging.Recently,more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating.Due to the flexibility and deformability of nucleic acids,the nanoassemblies could be fabricated with different shapes and structures.With hybridization,nucleic acid nanoassemblies,including DNA and RNA nanostructures,can be applied to enhance RNA therapeutics and diagnosis.This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
基金supported by the National Natural Science Foundation of China(21635005,21605083,21974064)the National Research Foundation for Thousand Youth Talents Plan of China,Specially-appointed Professor Foundation of Jiangsu Province,Program for innovative Talents and Entrepreneurs of Jiangsu Province。
文摘Array based detection techniques with fluorescence signal reading is a powerful tool for multiple targets analysis. However,when applied fluorescence array for micro RNA detection, time-consuming multi-steps surface signal amplification is usually required due to the low abundance of micro RNA in total RNA expressions, which impairs detection efficiency and limits its application in point of care test(POCT) manner. Herein, DNA cascade reactors(DCRs) functionalized photonic crystal(PC)array was fabricated for express and sensitive detections of mi RNA-21 and mi RNA-155. DCRs were assembled by interval conjugation of self-quenched hairpin DNA probes to single strand DNA nanowire synthesized by rolling circle amplification,which generated cascade DNA hybridization reactions in response to target mi RNAwith instant fluorescence recovery signal. PC array patterns with multi-structure colors further amplified fluorescence with their respective photonic bandgaps(PBGs)matching with the emission peaks of fluorescence molecules labelled on DCRs. The as-prepared DCRs functionalized PC array demonstrated express and sensitive simultaneous detections of mi RNA-21 and mi RNA-155 with hundreds f M detection limits only in 15 min, and was successfully applied in fast quantifications of low abundance mi RNAs from cell lysates and spiked mi RNAs from human serum, which would hold great potential for disease diagnosis and therapeutic effect monitoring with a POCT manner.
基金supported by the National Natural Science Foundation of China(31301958)the Chinese Postdoctoral Science Foundation(2013T60808)
文摘High-throughput sequencing has identified a large number of sense-antisense transcriptional pairs, which indicates that these genes were transcribed from both directions. Recent reports have demonstrated that many antisense RNAs, especially lnc RNA(long non-coding RNA), can interact with the sense RNA by forming an RNA duplex. Many methods, such as RNA-sequencing, Northern blotting, RNase protection assays and strand-specific PCR, can be used to detect the antisense transcript and gene transcriptional orientation. However, the applications of these methods have been constrained, to some extent, because of the high cost, difficult operation or inaccuracy, especially regarding the analysis of substantial amounts of data. Thus, we developed an easy method to detect and validate these complicated RNAs. We primarily took advantage of the strand specificity of RT-PCR and the single-strand specificity of S1 endonuclease to analyze sense and antisense transcripts. Four known genes, including mouse β-actin and Tsix(Xist antisense RNA), chicken LXN(latexin) and GFM1(Gelongation factor, mitochondrial 1), were used to establish the method. These four genes were well studied and transcribed from positive strand, negative strand or both strands of DNA, respectively, which represented all possible cases. The results indicated that the method can easily distinguish sense, antisense and sense-antisense transcriptional pairs. In addition, it can be used to verify the results of high-throughput sequencing, as well as to analyze the regulatory mechanisms between RNAs. This method can improve the accuracy of detection and can be mainly used in analyzing single gene and was low cost.
文摘The intrinsic affinity of DNA molecules toward metallic ions can drive the specific formation of copper nanostructures within the nucleic acid helix structure in a sequence-dependent manner. The resultant nanostructures have interesting fluorescent and electrochemical properties, which are attractive for novel biosensing applications. However, the potential of using DNA-templated nano- structures for precision disease diagnosis remains unexplored. Particularly, DNA- templated nanostructures show high potential for the universal amplification-free detection of different RNA biomarker species. Because of their low cellular levels and differing species-dependent length and sequence features, simultaneous detection of different messenger RNAs, microRNAs, and long non-coding RNAs species with a single technique is challenging. Here, we report a contemporary technique for facile in situ assembly of DNA-templated copper nanoblocks (CuNBs) on various RNA species targets after hybridization-based magnetic isolation. Our approach circumvents the typical limitations associated with amplification and labeling procedures of current RNA assays. The synthesized CuNBs enabled amplification-free fM-level RNA detection with flexible fluorescence or electrochemical readouts. Furthermore, our nanosensing technique displays potential for clinical application, as demonstrated by non-invasive analysis of three diagnostic RNA biomarkers from a cohort of 10 prostate cancer patient urinary samples with 100%-concordance (quantitative reverse transcription- polymerase chain reaction (PCR) validation). The good analytical performance and versatility of our method may be useful in both diagnostics and research fields.
基金Natural Science Foundation of Shanghai(Grant No.18ZR1420500)the Science and Technology Commission of Shanghai Municipality(Grant No.18JC1413600).Y.X.acknowledges National 1000 Youth Talents Program.W.L.and Y.Z.are recipients of China Postdoctoral Science Foundation(2018M632119 and 2018M632098).
文摘CRISPR-Cas technologies have greatly reshaped the biology field.In this review,we discuss the CRISPR-Cas with a particular focus on the associated technologies and applications of CRISPR-Cas9 and CRISPR-Cas12a,which have been most widely studied and used.We discuss the biological mechanisms of CRISPR-Cas as immune defense systems,recently-discovered anti-CRISPR-Cas systems,and the emerging Cas variants(such as xCas9 and Cas13)with unique characteristics.Then,we highlight various CRISPR-Cas biotechnologies,including nucleasedependent genome editing,CRISPR gene regulation(including CRISPR interference/activation),DNA/RNA base editing,and nucleic acid detection.Last,we summarize up-to-date applications of the biotechnologies for synthetic biology and metabolic engineering in various bacterial species.
文摘Many classes of non-coding RNAs (ncRNAs; including Y RNAs, vault RNAs, RNase P RNAs, and MRP RNAs, as well as a novel class recently discovered in Dictyostelium discoideum) can be characterized by a pattern of short but well-conserved sequence elements that are separated by poorly conserved regions of sometimes highly variable lengths. Local alignment algorithms such as BLAST are therefore ill-suited for the discovery of new homologs of such ncRNAs in genomic sequences. The Fragrep tool instead implements an efficient algorithm for detecting the pattern fragments that occur in a given order. For each pattern fragment, the mismatch tolerance and bounds on the length of the intervening sequences can be specified separately. Furthermore, matches can be ranked by a statistically well-motivated scoring scheme.