针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法...针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。展开更多
针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP...针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.展开更多
为实现移动机器人在复杂动态障碍物环境中的避障,提出一种改进的快速随机扩展树(rapidly-exploring random tree,RRT^(*))与动态窗口法(dynamic window approach,DWA)相融合的动态路径规划方法。基于已知环境信息,利用改进RRT^(*)算法...为实现移动机器人在复杂动态障碍物环境中的避障,提出一种改进的快速随机扩展树(rapidly-exploring random tree,RRT^(*))与动态窗口法(dynamic window approach,DWA)相融合的动态路径规划方法。基于已知环境信息,利用改进RRT^(*)算法生成全局最优安全路径。通过消除RRT^(*)算法产生的危险节点,来确保全局路径的安全性;使用贪婪算法去除路径中的冗余节点,以缩短全局路径的长度。利用DWA算法跟踪改进RRT^(*)算法规划的最优路径。当全局路径上出现静态障碍物时,通过二次调整DWA算法评价函数的权重来避开障碍物并及时回归原路线;当环境中出现移动障碍物时,通过提前检测危险距离并转向加速的方式安全驶离该区域。仿真结果表明:该算法在复杂动态环境中运行时间短、路径成本小,与障碍物始终保持安全距离,确保在安全避开动态障碍物的同时,跟踪最优路径。展开更多
针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算...针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。展开更多
针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相...针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相似性的多步扩展与路径简化,使用贝塞尔曲线拟合生成规划问题初始解,最后使用序列二次规划优化曲线控制点,从而在动态障碍物环境中生成兼具安全性与驾驶舒适性的车辆行驶轨迹.在仿真实验中将本文算法与常规RRT及曲线拟合方法进行了比较,结果显示本文算法在搜索速度、平顺性、安全性等方面有较大提升.展开更多
文摘针对传统快速随机搜索树^(*)(rapidly-exploring random tree^(*),RRT^(*))算法收敛速率较慢,且不适用于动态场景等问题,提出一种基于目标点偏置和冗余节点删除的改进RRT*算法,用于解决移动机器人快速找到无碰撞最优路径的问题。此算法在RRT^(*)算法基础上,首先对采样点进行优化处理,保证路径最优的同时减少搜寻时间;其次引入路径节点最大值概念,删除扩展树冗余节点以提高算法效率;最后结合动态窗口(dynamic window approaches,DWA)算法提高路径的安全性和平滑性,实现对动态障碍物的避障。通过3种不同地图下的仿真验证,改进算法能有效提升路径质量,且大幅降低运行时间。
文摘针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.
文摘为实现移动机器人在复杂动态障碍物环境中的避障,提出一种改进的快速随机扩展树(rapidly-exploring random tree,RRT^(*))与动态窗口法(dynamic window approach,DWA)相融合的动态路径规划方法。基于已知环境信息,利用改进RRT^(*)算法生成全局最优安全路径。通过消除RRT^(*)算法产生的危险节点,来确保全局路径的安全性;使用贪婪算法去除路径中的冗余节点,以缩短全局路径的长度。利用DWA算法跟踪改进RRT^(*)算法规划的最优路径。当全局路径上出现静态障碍物时,通过二次调整DWA算法评价函数的权重来避开障碍物并及时回归原路线;当环境中出现移动障碍物时,通过提前检测危险距离并转向加速的方式安全驶离该区域。仿真结果表明:该算法在复杂动态环境中运行时间短、路径成本小,与障碍物始终保持安全距离,确保在安全避开动态障碍物的同时,跟踪最优路径。
文摘针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。
文摘针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相似性的多步扩展与路径简化,使用贝塞尔曲线拟合生成规划问题初始解,最后使用序列二次规划优化曲线控制点,从而在动态障碍物环境中生成兼具安全性与驾驶舒适性的车辆行驶轨迹.在仿真实验中将本文算法与常规RRT及曲线拟合方法进行了比较,结果显示本文算法在搜索速度、平顺性、安全性等方面有较大提升.